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Rhei Undulati Rhizoma attenuates memory 
decline and reduces amyloid‑β induced neuritic 
dystrophy in 5xFAD mouse
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Abstract 

Background  Alzheimer’s disease (AD) is a common type of dementia characterized by amyloid-β (Aβ) accumula-
tion, lysosomal dysfunction, and tau hyperphosphorylation, leading to neurite dystrophy and memory loss. This study 
aimed to investigate whether Rhei Undulati Rhizoma (RUR), which has been reported to have anti-neuroinflammatory 
effect, attenuates Aβ-induced memory impairment, neuritic dystrophy, and tau hyperphosphorylation, and to reveal 
its mode of action.

Methods  Five-month-old 5xFAD mice received RUR (50 mg/kg) orally for 2 months. The Y-maze test was used 
to assess working memory. After behavioral testing, brain tissue was analyzed using thioflavin S staining, western 
blotting, and immunofluorescence staining to investigate the mode of action of RUR. To confirm whether RUR directly 
reduces Aβ aggregation, a thioflavin T assay and dot blot were performed after incubating Aβ with RUR.

Results  RUR administration attenuated the Aβ-induced memory impairment in 5xFAD mice. Furthermore, decreased 
accumulation of Aβ was observed in the hippocampus of the RUR-treated 5xFAD group compare to the vehicle-
treated 5xFAD group. Moreover, RUR reduced the dystrophic neurites (DNs) that accumulate impaired endolysosomal 
organelles around Aβ. In particular, RUR treatment downregulated the expression of β-site amyloid precursor protein 
cleaving enzyme 1 and the hyperphosphorylation of tau within DNs. Additionally, RUR directly suppressed the aggre-
gation of Aβ, and eliminated Aβ oligomers in vitro.

Conclusions  This study showed that RUR could attenuate Aβ-induced pathology and directly regulate the aggrega-
tion of Aβ. These results suggest that RUR could be an efficient material for AD treatment through Aβ regulation.

Keywords  Rhei Undulati Rhizoma, Amyloid-β, Dystrophic neurites, β-Site amyloid precursor protein cleaving 
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Introduction
Alzheimer’s disease (AD), a neurodegenerative disorder, 
is the most common type of dementia and is character-
ized by memory loss, cognitive difficulties, and aggres-
sive behavior [1]. In AD, brain volume decreases due to 
neuronal cell death and in severe cases, brain atrophy is 
observed [2]. Misfolded proteins, such as amyloid-β (Aβ) 
and tau accumulate in the brain of patients with AD, and 
these factors induce neuronal cell death, neuroinflamma-
tion, and synaptic loss [3]. Among the various hypothe-
ses in the etiology of AD, the Aβ cascade hypothesis has 
been widely studied as a key pathology in AD [4].

In the amyloidogenic pathway, β-site amyloid precur-
sor protein (APP) cleaving enzyme 1 (BACE1) cleaves 
the β-site of APP and generates C-terminal fragment 
(CTF)-β, instead of the α-secretase which cleaves the 
α-site of APP [5]. This fragment is then further cleaved 
by γ-secretase to generate Aβ [6]. Sequential cleavage of 
APP by β-secretase and γ-secretase results in the aggre-
gation of Aβ in the brain [7]. The monomeric Aβ gener-
ated from the amyloid processing pathway aggregates 
into various forms such as protofibrils, oligomers, and 
plaques [8]. The aggregated forms of Aβ cause neurotox-
icity and induce neuronal cell death in the hippocampus 
which plays a critical brain region in terms of learning 
and memory formation [9]. To protect neuronal cells 
from neurotoxic Aβ, the clearance mechanism, such as 
the endolysosomal pathway, is activated [10].

Lysosomes are membrane-bound vesicles contain-
ing various enzymes, including proteases, phosphatases, 
and nucleases, which are known as cellular organelles 
responsible for the degradation of cellular molecules, 
such as proteins, lipids, and carbohydrates, through 
endocytosis [11]. Lysosomes also play an important role 
in homeostasis, cellular signaling, and metabolism [12]. 
Unfortunately, individuals with AD exhibit endolysoso-
mal dysfunction [13]. Dysfunctional endolysosomal orga-
nelles accumulate in dystrophic neurites (DNs) around 
the Aβ deposit [14], and hyperphosphorylated tau is also 
observed within the DNs [15]. Accumulated DNs induce 
focal axonal swellings that interfere with the traffick-
ing and decomposition pathways of enzymes involved 
in Aβ generation such as β-secretase [16]. Furthermore, 
recent studies have shown that DNs are correlated with 
the severity of AD [17]. Therefore, downregulation of Aβ 
aggregation and alleviation of neuritic dystrophy could be 
a potential therapeutic strategy for the treatment of AD.

Rhei Undulati Rhizoma (RUR), an herbal medicine 
belonging to the family Polygonaceae, have tradition-
ally been used to treat constipation, ulcers, and jaundice 
in the East Asia [18]. Furthermore, recent studies have 
reported that RUR has various pharmacological activities 
such as anti-inflammatory, antioxidant, and anti-neuroin-
flammatory effects [19–21]. Furthermore, rhapontigenin 
in stilbene glucosides isolated from RUR has a neuro-
protective effect against Aβ-induced neurotoxicity [22]. 
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Based on previous reports, we hypothesized that RUR 
attenuates AD pathology.

In this study, we evaluated the effect of RUR on the 
pathological characteristics of AD in the 5xFAD mouse. 
We administered RUR orally to 5xFAD transgenic mice 
and performed a behavior test to investigate the effect 
of RUR on Aβ-induced memory loss. Furthermore, we 
measured the effects of RUR on Aβ accumulation, neu-
ritic dystrophy, and tau hyperphosphorylation in the 
hippocampus of the brain of 5xFAD mice. Furthermore, 
we performed a thioflavin T (Th T) fluorescence assay to 
evaluate the anti-aggregation effect of RUR on β-sheet 
rich forms of Aβ.

Materials and methods
Materials
Horseradish peroxidase (HRP) conjugated mouse 
anti-β-actin antibody was purchased from Santa Cruz 
Biotechnology (Temecula, CA, USA). Rabbit anti-glyc-
eraldehyde-3-phosphate dehydrogenase (GAPDH) anti-
body, rabbit-anti-Protein kinase B (Akt) antibody, rabbit 
anti-phospho-Akt (serine 473) antibody, rabbit anti-
Glycogen synthase kinase-3 (GSK-3β) antibody, rabbit 
anti-phospho-GSK-3β (serine 9), and rabbit anti-lysoso-
mal-associated membrane protein 1 (LAMP1) antibody 
were purchased from Cell Signaling Technology (Dan-
vers, MA, USA). Mouse anti-β-Amyloid antibody (6E10) 
was purchased from BioLegend (San Diego, CA, USA). 
Aβ1-42 peptide was purchased from AnaSpec (Fremont, 
CA, USA). Skim milk was purchased from BD Transduc-
tion Laboratories (Franklin Lakes, NJ, USA). Mouse anti-
BACE1 antibody and polyvinylidene difluoride (PVDF) 
was purchased from Millipore (Burlington, MA, USA). 
Normal horse serum and anti-fade fluorescent mount-
ing medium containing 4′,6-diamidino-2-phenylindole 
were purchased from Vector Laboratories (Burlingame, 
CA, USA). Anti-mouse and anti-rabbit HRP secondary 
antibodies were purchased from Enzo Life Sciences, Inc. 
(Farmingdale, NY, USA). Tetramethylethylenediamine, 
protein assay reagent, acrylamide, enhanced chemilu-
minescence (ECL) reagent, protein standards dual color, 
and Tween 20 were purchased from Bio-Rad Labora-
tories (Hercules, CA, USA). Rabit-anti-CTF antibody, 
mouse anti-AT8 (phosphor-tau, serine 202/threonine 
205) antibody, rabbit anti-oligomer antibody (A11), goat 
anti-rabbit Alexa 488, goat anti-mouse Alexa 594, and 
protease/phosphatase inhibitor cocktail were purchased 
from Thermo Fisher Scientific (Waltham, MA, USA). 
Nordihydroguaiaretic acid (NDGA), Th T, thioflavin S 
(Th S), and all the other reagents were purchased from 
Sigma-Aldrich (St. Louis, MO, USA), unless otherwise 
noted.

Preparation of RUR extract
RUR was purchased from the Kwangmyoungdang 
Medicinal Herbs (Naemomedah, Ulsan, Republic of 
Korea). RUR, the voucher specimen (BON19012401), 
was deposited in the herbarium of the College of Phar-
macy at Kyung Hee University (Seoul, Republic of 
Korea). The dried rhizomes were extracted with 70% 
ethanol on rocking shaker for 24  h at room tempera-
ture. The extract was then filtered and lyophilized to 
obtain a powder (yield: 28.50%). The extract was resus-
pended in an appropriate vehicle before use. Extract of 
RUR was standardized the contents of rhapontin and 
rhapontigenin, the principal compounds of RUR that 
are known to suppress neuroinflammation and attenu-
ate Aβ/tau-related AD pathological features, using an 
ultra performance liquid chromatography-photodiode 
array analysis [19, 23]

Animals and administration
We purchased 5xFAD (B6SJL-Tg(APPSwFlLon, 
PSEN1*M146L*L286V)6799Vas/Mmjax) mouse 
from the Jackson Laboratory (Bar Harbor, ME, USA). 
5xFAD mutations include APP KM670/671NL (Swed-
ish), APPI716V (Florida), APPV717I (London), PSEN1 
M146L, and PSEN1 L286V, resulting in early and aggres-
sive Aβ accumulation related to memory deficits [24]. 
Five-month-old male and female wild-type (WT) and 
5xFAD mouse were used in the experiments. Mouse were 
divided into three groups: WT (n = 21), 5xFAD (n = 11), 
and 5xFAD + RUR at 50 mg/kg (n = 11). RUR at 50 mg/
kg was dissolved in 2% tween 80 and orally administered 
using a Zonde needle to 5xFAD mouse for 2 months. The 
mouse were housed in plastic cages with constant tem-
perature (23 ± 1 °C), humidity (50 ± 10%), and a 12 h light/
dark cycle and free access to food and water. In this study, 
all animal studies were performed in accordance with the 
‘Guide for the Care and Use of Laboratory Animals, 8th 
edition’ (National Institutes of Health, 2011).

Y‑maze test
The Y-maze test was performed using a Y-shaped maze 
consisting of three arms (40 cm × 3 cm × 12 cm walls) 
to assess working memory [25]. The mouse was placed 
in the center of the Y-maze and allowed to explore each 
arm labeled A, B, or C. Arm entries and sequences were 
recorded for 8 min. Alternation behavior was defined as 
consecutive entries in three different arms without rep-
etition: ABC, BCA, or CBA. The percentage of sponta-
neous alternations was calculated using the following 
equations: (number of alternations/total number of arm 
entries − 2) × 100.
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Brain tissue preparation
For tissue analysis, the mice were anesthetized and tran-
scardially perfused with 0.05 M phosphate-buffered 
saline (PBS). After perfusion was complete, the mouse 
was fixed with 4% para-formaldehyde in 0.1 M phosphate 
buffer. The dissected brains were then post-fixed over-
night at 4 °C, and immersed in 30% sucrose dissolved in 
PBS for cryoprotection. Serial 25 μm thick coronal sec-
tions were cut on a freezing sliding microtome (Leica 
Microsystems Inc., Nussloch, Germany) and stored in a 
cryoprotectant (25% ethylene glycol, 25% glycerol, and 
0.05 M phosphate buffer) at 4 °C until use.

Thioflavin S (Th S) staining
For staining Aβ plaques, we used Th S, which interacts 
with the β-sheet structure of amyloid plaques and com-
monly visualizes the region of Aβ plaques in the mouse 
brain [26]. The free-floating sections were washed with 
PBS and mounted on adhesion microscope slides. The 
slides were incubated in the dark with 0.5% Th S for 20 
min, rinsed with 50%, 70%, 90%, and 100% ethanol for 2 
min each, and covered with mounting medium.

Immunofluorescence staining
For immunofluorescence staining, free-floating sections 
of mouse brains were rinsed in PBS and incubated for 
1 h in a blocking solution containing 3% normal goat or 
horse serum, 2% bovine serum albumin, and 0.3% Tri-
ton X-100 at RT. After the blocking step, the sections 
were incubated with primary antibodies overnight at 
4°C. For visualization, they were subsequently incubated 
with secondary antibody for 1  h at RT. The sections 
were mounted and the cover-slipped using an anti-fade 
mounting medium containing 4′,6-diamidino-2-phe-
nylindole. Fluorescent images were captured using a 
K1-Fluo confocal microscope (Nanoscope Systems, Dae-
jeon, Republic of Korea).

Western blot
Western blot was performed as previously described 
[27]. The hippocampal regions of mouse brains were dis-
sected in the vehicle-treated WT group, vehicle-treated 
5xFAD group, and RUR-treated 5xFAD group. Then, the 
hippocampus was homogenized in radio-immunopre-
cipitation assay lysis buffer (RIPA) containing protease/
phosphatase inhibitors. The protein amount of the sam-
ple buffer was equalized to 30  μg using the Bradford 
assay. Protein samples were separated by sodium dodecyl 
sulfate–polyacrylamide gel electrophoresis, and trans-
ferred to PVDF membranes. Next, the membranes were 
incubated with blocking solution containing 5% bovine 
serum albumin or skim milk in 0.1% Tween 20 in tris-
buffered saline for 1  h at RT, and reacted with primary 

antibodies overnight at 4  °C. After that, they were incu-
bated with HRP-conjugated secondary antibodies for 1 h 
at RT. The immunoreactive bands on the membrane were 
detected by the ECL reagent and visualized using Chemi-
DocXRS + imaging system (Bio-Rad Laboratories). The 
quantification of band intensity was performed using the 
ImageJ software (Bethesda, MD, USA).

Aβ enzyme‑linked immunosorbent assay (ELISA)
Aβ1-42 and Aβ1-40 ELISA was performed using fluores-
cent-based kit (Invitrogen, Camarillo, CA, USA) and 
appropriate Aβ1-42 and Aβ1-40 standards based on the 
product guideline, respectively. To obtain soluble frac-
tion, right half of hippocampus was homogenized in 
RIPA buffer containing protease/phosphatase inhibi-
tor and incubated on ice for 2h. After centrifugation at 
15,000 rpm for 20 min, the supernatant (RIPA fraction) 
was collected and used as soluble proteins. The pellets 
were subsequently dissolved in 70% formic acid and incu-
bated on ice for 2 h. After centrifugation at 15,000 rpm 
for 20 min, the supernatant (formic acid fraction) was 
neutralized by Tris base buffer and used as insoluble pro-
teins [28]. Protein concentrations of soluble and insoluble 
protein samples were determined using the Bradford pro-
tein assay and Lowry protein assay, respectively.

Th T assay
Th T is commonly used to measure Aβ fibril aggrega-
tion and enhanced fluorescence emission when bound to 
the β-sheet of Aβ fibrils [26]. Aβ1-42 monomer (5  μL of 
100  μM in dimethyl sulfoxide) was incubated with PBS 
or RUR (0.3, 3, or 30  μg/mL) for 48  h at 37  °C. Then, 
150 μL of 5 μM Th T solution diluted with 50 mM gly-
cine-sodium hydroxide at pH 8.5 was added and incu-
bated for 30 min at RT. Th T fluorescence was measured 
at 520 nm with excitation at 470 nm by FLUOstar Omega 
multimode microplate reader (BMG LABTECH GmbH, 
Ortenberg, Germany).

Dot blot
The Aβ1-42 monomer (25  μM in DMEM/F-12 1:1 mix-
ture) was incubated with PBS or RUR (0.3, 3, or 30  μg/
mL) for 24 h at 4°C to measure the effect of RUR on Aβ1-

42 oligomerization. Furthermore, the Aβ1-42 oligomer 
(25  μM in DMEM/F-12 1:1 Mixture) was incubated 
with PBS or RUR (0.3, 3, or 30 μg/mL) for 3 h at 4 °C to 
measure the effect of RUR on Aβ1-42 oligomer degrada-
tion. Then, 2  μL of each sample was spotted on PVDF 
membranes. The membrane was reacted with primary 
antibodies overnight at 4 °C. The membranes were incu-
bated with HRP-conjugated secondary antibodies for 1 h 
at RT. The immunoreactive bands on the membrane were 
detected using an ECL reagent and visualized using a 
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ChemiDocXRS + imaging system (Bio-Rad Laboratories). 
The quantification of the band intensity was performed 
using ImageJ software (Bethesda, MD, USA).

Statistical analysis
All statistical parameters were calculated using Graph-
Pad Prism version 8.0 software (Graphpad Software, 
San Diego, CA, USA). Values were expressed as the 
mean ± standard error of the mean, and analyzed using 
one-way analysis of variance (ANOVA), followed by 
Dunnett’s post hoc test or an unpaired Student’s t-test. 
Differences with a p value less than 0.05 were considered 
statistically significant.

Results
Effect of RUR administration on memory decline 
in the 5xFAD mouse
The 5xFAD mice, a transgenic mouse well known as an 
AD model, are characterized by increased Aβ accumu-
lation in the brain. Furthermore, in this model, memory 
impairment caused by Aβ accumulation is observed 
[24]. To identify whether RUR alleviates memory loss 
in 5xFAD mice, we administered RUR to 5-month-old 
5xFAD mice for 2 months and performed a Y-maze test to 
assess working memory [29]. The total number of entries 
did not differ between the groups. The 5xFAD group 
showed a significantly lower percentage of spontaneous 
alternation (%) than the WT group. However, treatment 
with 50 mg/kg RUR markedly increased the percentage 
of spontaneous alternations (Fig.  1). Additionally, we 
performed MWM to assess the effect of RUR on spatial 
memory [30]. On the 5th day of training, the vehicle-
treated 5xFAD group showed slower escape latency than 
the vehicle-treated WT group. However, the RUR-treated 
5xFAD group had exhibited faster escape latency com-
pared to the vehicle-treated 5xFAD group. Moreover, the 
time spent in the target quadrant on the probe trial, was 
significantly reduced in the vehicle-treated 5xFAD group 
compared to the vehicle-treated WT group, whereas this 
level was elevated in the RUR-treated 5xFAD group (Sup-
plementary Figure S1).

Effect of RUR on Aβ accumulation in the brain of the 5xFAD 
mouse
To determine whether RUR could suppress the accumu-
lation of Aβ, we stained the deposition of Aβ within the 
hippocampus and cortex using Th S staining and immu-
nohistochemical analysis using 6E10. In Th S staining, 
RUR markedly reduced β-sheet-rich amyloid plaques in 
the hippocampus (Fig. 2A, B). Furthermore, RUR-treated 
5xFAD mice had a significant decrease in 6E10-positive 
Aβ protein levels compared to vehicle-treated 5xFAD 
mice (Fig. 2C, D). However, in the cortex, no differences 

were identified between the two groups in either assay. 
Moreover, we measured Aβ1-42 and Aβ1-40 levels in the 
hippocampus of 5xFAD mouse using ELISA kit. RUR 
administration reduced the soluble form of Aβ1-42 and 
Aβ1-40 levels and insoluble form of Aβ1-40 level in the hip-
pocampus (Fig. 2E, F).

We also performed a western blot analysis to meas-
ure the protein expression levels of APP derivatives 
after cleavage. The protein level of soluble APP (sAPP) 
was higher in 5xFAD mice than in WT mice, while RUR 
remarkably downregulated the expression of the sAPP 
protein (Fig.  3A, B). Furthermore, we measured the 
CTF-β produced when APP is cleaved by β-secretase. We 
first measured the protein levels of CTF-β through west-
ern blotting. CTF-β protein was overexpressed in the 
vehicle-treated 5xFAD group compared to the vehicle-
treated WT group. However, RUR treatment markedly 
reduced both fragments in a manner similar to that of 
sAPP (Fig. 3C, D).

Effect of RUR administration on the accumulation of DNs 
in the hippocampus of the 5xFAD mouse
To examine whether RUR could ameliorate the accumu-
lation of DNs around the Aβ peptide, we co-stained with 
LAMP1 as the lysosomal marker, and 6E10 as the Aβ 
marker. The LAMP1-positive area was significantly larger 
in the vehicle-treated 5xFAD group than in the vehicle-
treated WT group. In contrast, RUR treatment mark-
edly reduced LAMP1 positive areas in the hippocampus 
(Fig.  4A, B). We also quantified the region of LAMP1 
and 6E10 colocalization to assess whether RUR reduces 
the accumulated DNs around Aβ. We observed that RUR 
treatment reduced the co-stained regions of LAMP1 and 

Fig. 1  Effects of Rhei Undulati Rhizoma (RUR) on memory decline 
in the 5xFAD mouse. Five-month-old WT and 5xFAD mice were 
administered vehicle or RUR (50 mg/kg) for 2 months. In the Y-maze 
test, spontaneous alternations (A) and total entries (B) were 
measured. The statistical analyses were performed using one-way 
analysis of variance (ANOVA), followed by Dunnett’s post hoc test. 
*p < 0.05 vs. 5xFAD group
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Fig. 2  Effect of RUR on Aβ accumulation in the brain of the 5xFAD mouse. Representative photomicrographs and quantifications for Th S staining 
(A, B) and 6E10 immunopositive areas (C, D) are shown in the hippocampus and cortex (n = 5 − 6 per group). Analysis of soluble and insoluble levels 
of Aβ1-42 and Aβ1-40 from the hippocampus of the mouse using ELISA kits (n = 5 − 6 per group). The statistical analyses were performed by unpaired 
Student’s t test. *p < 0.05 and **p < 0.01 vs. 5xFAD group. Scale bar = 200 μm. Aβ, amyloid-β; Th S, thioflavin S; 6E10, anti-Aβ antibody



Page 7 of 14Lee et al. Chinese Medicine           (2024) 19:95 	

6E10, indicating that RUR treatment alleviated the accu-
mulation of DNs (Fig. 4C).

Effect of RUR administration on the expression of BACE1 
within DNs in the hippocampus of the 5xFAD mouse
To measure whether RUR could attenuate BACE1 accu-
mulation within DNs around Aβ burden, we measured 
BACE1 levels within DNs using double immunofluores-
cence staining for LAMP1 and BACE1 in the hippocam-
pus. The area co-stained with LAMP1 and BACE1 was 
larger in the vehicle-treated 5xFAD group than in the 
vehicle-treated WT group, while this area was sig-
nificantly reduced in the RUR-treated 5xFAD group 
(Fig. 5A, B). BACE1 levels in the hippocampi of 5xFAD 
mice were measured by western blot analysis using 
anti-BACE1 antibody. The expression of BACE1 was 
significantly upregulated in the 5xFAD group compared 
to that in the WT group. Furthermore, 50 mg/kg RUR 

markedly reduced BACE1 expression compared to the 
5xFAD mouse group (Fig. 5C, D, Supplementary Figure 
S2).

Effect of RUR administration on the hyperphosphorylation 
of tau within DNs in the hippocampus of the 5xFAD mouse
To assess whether RUR alleviated tau phosphorylation 
within DNs, we co-stained hippocampal sections with 
LAMP1 and AT8 antibodies. The co-stained region of 
LAMP1 and AT8 increased markedly in the vehicle-
treated 5xFAD group compared to the vehicle-treated 
WT group. However, this area was significantly reduced 
in the RUR-treated 5xFAD group compared to that in 
the vehicle-treated 5xFAD group (Fig. 6A, B). Phospho-
rylated levels of tau in the hippocampus were measured 
by western blot analysis using anti-AT8. Similarly to the 
results of immunofluorescence staining, the phosphoryl-
ated ratio of tau was increased in 5xFAD mice compared 

Fig. 3  Effect of RUR on derivatives of APP by cleavage in the hippocampus. The representative band image (A) and quantification (B) of sAPP are 
shown (n = 4 − 5 per group). The protein level of sAPP was normalized to β-actin. The representative band image (C) and quantification (D) of CTF- β 
are shown (n = 4 − 5 per group). The protein level of CTF- β was normalized to GAPDH. The statistical analyses were performed using ANOVA, 
followed by Dunnett’s post hoc test. ****p < 0.0001, ***p < 0.001, **p < 0.01, and *p < 0.05 vs. 5xFAD group. APP amyloid precursor protein, sAPP 
soluble APP, CTF-β c-terminal fragment –β, GAPDH glyceraldehyde-3-phosphate dehydrogenase
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to WT mice, while RUR administration reduced the ratio 
in the hippocampus (Fig.  6C, D). To explore whether 
RUR ameliorated the hyperphosphorylation of tau, we 
measured the phosphorylation of GSK-3β. In AD condi-
tions, the activation of GSK-3β is increased and induces 
tau hyperphosphorylation [31]. However, the phospho-
rylation GSK-3β at the serine 9 by several kinases such 
as Akt, suppresses GSK-3β activation [32]. The GSK-3β 
phosphorylation at serine 9 was reduced in vehicle-
treated 5xFAD group, compared to the vehicle treated 
WT group, whereas RUR treatment increased the ser-
ine 9-phosphorylated form of GSK-3β. Moreover, RUR 
administration increased Akt phosphorylation. Taken 
together, RUR downregulates GSK-3β activation by the 
phosphorylation of serine 9 site via Akt activation, and 
these results suggest that RUR treatment suppresses tau 
hyperphosphorylation in the hippocampus of 5xFAD 
mouse (Fig. 6C, D).

Effect of RUR on Aβ aggregation in vitro
To confirm how RUR directly reduced Aβ accumulation 
in the 5xFAD mouse brain, we performed a Th T assay 
and dot blot after incubating Aβ peptides with RUR. 
NDGA, known to inhibit Aβ aggregation, was used as 
a positive control [26]. As a result, RUR incubated with 
Aβ1-42 monomer reduced aggregated Aβ compared to 
Aβ1-42 incubated alone (Fig.  7A). Moreover, to identify 
whether RUR affects Aβ oligomers, dot blotting was 
performed using the A11 antibody that reacts with Aβ 
oligomer. As a result, RUR incubated with Aβ1-42 mono-
mer showed less Aβ1-42 oligomer aggregation than Aβ1-42 
monomer incubated alone (Fig.  7B). Additionally, RUR 
incubated with Aβ1-42 oligomer eliminated this form of 
Aβ (Fig. 7C).

Fig. 4  Effect of RUR administration on the accumulation of DNs in the hippocampus. Representative photomicrographs of LAMP1 (green) and 6E10 
(red) immunopositive areas in the hippocampus are shown (n = 5 − 6 per group) (A). The quantification of the LAMP1-positive area was measured 
by ImageJ (B). The percentage of colocalization (LAMP1:6E10) was measured using a colocalization finder from ImageJ (C). The statistical 
analyses were performed using ANOVA, followed by Dunnett’s post hoc test. **p < 0.01 and *p < 0.05 vs. 5xFAD group. Scale bar = 200 μm. LAMP1 
lysosomal-associated membrane protein 1
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Discussion
In this study, we investigated whether RUR treatment 
alleviated amyloid pathology in human APP and PSEN1 
overexpressing transgenic mice. Our results demonstrate 
that the RUR attenuates memory loss in 5xFAD mice 
(Fig.  1). Additionally, RUR decreased the accumulation 
of Aβ protein including Aβ monomers, oligomers, and 
plaques in the brain of 5xFAD mouse (Figs. 2, 3). Addi-
tionally, this study showed that RUR alleviated the accu-
mulation of LAMP1 and BACE1 within the DNs and tau 
hyperphosphorylation in the hippocampus (Figs. 4, 5, 6). 
Lastly, RUR inhibited Aβ aggregation and eliminated Aβ 
oligomers in vitro (Fig. 7).

The amyloid cascade hypothesis posits that Aβ accu-
mulation in the brain is the primary cause of AD [33]. 
Under AD conditions, β-secretases induces APP endo-
cytosis and sequentially cleaves APP together with 
γ-secretase within endosomes to produce monomeric 
Aβ, and this peptide is released into the extracellular 
space [34, 35]. The C-terminal of Aβ protein induces con-
formational changes from α-helix to β-sheet [36], leading 
to the aggregation of Aβ monomers into β-sheet rich oli-
gomers, protofibrils, and fibrils [37]. In this study, RUR 
inhibited the further accumulation of Aβ aggregates in 
the brain of 5xFAD and suppressed the aggregation of Aβ 
peptides in  vitro. These results suggest that RUR could 

Fig. 5  Effect of RUR administration on the expression of BACE1 within DNs in the hippocampus. Representative photomicrographs of LAMP1 
(green) and BACE1 (red) immunopositive areas in the hippocampus are shown (n = 5 − 6 per group) (A). The percentage of colocalization 
(LAMP1:BACE1) was measured using a colocalization finder from ImageJ (B). The representative band image (C) and quantification (D) of BACE1 are 
shown (n = 4 − 5 per group). The protein level of BACE1 was normalized to β-actin. The statistical analyses were performed using ANOVA, followed 
by Dunnett’s post hoc test. **p < 0.01 and *p < 0.05 vs. 5xFAD group. Scale bar = 200 μm. BACE1 β-site amyloid precursor protein cleaving enzyme 1
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directly target Aβ aggregates and protect against their 
impact on neurotoxicity.

BACE1, a transmembrane protein that plays a role in 
aspartyl protease activity, is commonly localized in the 
endosomes of brain neurons [38, 39]. Under healthy con-
ditions, BACE1 is transported through endo-lysosomal 
organelles and is degraded by the lysosomal pathway 
[40]. However, as AD progresses, lysosomal dysfunc-
tion worsens and BACE1 accumulates in Aβ plaques in 
the dystrophic axons [41]. Lysosomal dysfunction causes 
BACE1 and APP to accumulate in immature lysosomes, 
upregulates β-site cleavage of APP, and increases Aβ pro-
duction [38, 42]. Moreover, several studies have reported 
that under stressful conditions caused by pro-inflamma-
tory cytokine, reactive oxygen species, and excitotoxicity, 

BACE1 expression increases and Aβ generation is accel-
erated [43]. Furthermore, Aβ aggregated forms upregu-
lates protein levels of BACE1, indicating the loop of 
positive feedback [44]. According to several studies, the 
upregulation of BACE1 in the brain is associated with 
the development of AD. In this study, RUR treatment 
reduced the co-staining area of LAMP1 and BACE1, and 
these results showed that RUR could alleviate BACE1 
accumulation within DNs around the Aβ deposit.

In the lysosomal degradation pathway, retrograde 
transport to the cell body is required for lysosomal mat-
uration [45], and mature lysosomes degrade misfolded 
proteins, such as Aβ, that are delivered by endocytosis, 
autophagy, and phagocytosis [46]. However, in AD condi-
tions, the excessive accumulation of Aβ causes lysosomal 

Fig. 6  Effect of RUR administration on the hyperphosphorylation of tau within DNs in the hippocampus. Representative photomicrographs 
of LAMP1 (green) and AT8 (red) immunopositive areas in the hippocampus are shown (n = 5 − 6 per group) (A). The percentage of colocalization 
(LAMP1:AT8) was measured using a colocalization finder from ImageJ (B). The representative band (C) and quantification of the AT8 normalized 
to total tau, p-GSK-3β (ser9) normalized to total GSK-3β, and p-Akt normalized to total Akt (D) are shown (n = 4 − 5 per group). The statistical analyses 
were performed using ANOVA, followed by Dunnett’s post hoc test. ***p < 0.001, **p < 0.01 and *p < 0.05 vs. 5xFAD group. Scale bar = 200 μm
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dysfunction, and these lysosomes accumulate within dys-
trophic axons adjacent to the Aβ burden [47]. Therefore, 
the intracellular transport of lysosomes to the cell body 
is disrupted by focal axonal swelling [48], resulting in 
abnormal lysosomal proteolysis, leading to the genera-
tion of DNs and lysosomal dysfunction [49]. Additionally, 
DNs contribute to the accumulation of Aβ plaques, which 
in turn leads to memory loss, cognitive impairment, neu-
rodegeneration, and synaptic loss [16, 50]. Furthermore, 
recent studies have reported that mutations in APP and 
PSEN1 induce lysosomal dysfunction, disrupt axonal 
transport of lysosomes, and accumulate dysfunctional 
lysosomes in axons [51]. In this study, we identified that 
LAMP1-positive lysosomal vesicle accumulate within 
DNs around Aβ in the hippocampus of the 5xFAD mouse 
model, which overexpress human APP and PSEN1, and 
showed that RUR treatment could suppress the accumu-
lation of dysfunctional lysosomes in the 5xFAD mouse.

Furthermore, we evaluated the effect of RUR treatment 
on tauopathy. Tau is a microtubule-associated protein 
that stabilizes the cellular cytoskeleton [52]. However, 
when tau proteins are highly phosphorylated, they 

dissociate from the cytoskeleton and accumulate in the 
brain, consequently inducing tauopathy, which is a path-
ological feature of AD [53]. In the brains of patients with 
AD, the levels of phosphorylated tau are 3–4 times higher 
than in the brains of healthy controls [54]. A previous 
study reported that the expression of phospho-tau (serine 
202/threonine 205) in AD brains could predict the stage 
of tau pathology and these tau sites are phosphorylated 
by various kinases, such as GSK-3β and cyclin-depend-
ent kinase 5 [55, 56]. Several studies have been reported 
that GSK-3β is excessively activated in the brains of AD 
patients, and the its activation is associated with memory 
impairment, synaptic loss, and neuroinflammation [57]. 
Moreover, GSK-3β activation induces Aβ generation and 
accumulation in the brain [58]. GSK-3β stimulates the 
mRNA expression of BACE1 thorough NF-κB pathway 
and induces APP cleavage by BACE1, resulting in Aβ 
deposits [32]. However, the phosphorylation of GSK-3β 
at serine 9 by Akt, which is known to play a role in cell 
survival and apoptosis, inhibits the activation of GSK-3β 
[59]. The dysfunction of the Akt/GSK-3β signaling path-
way leads to excessive activation of GSK-3β, resulting 

Fig. 7  Effect of RUR on Aβ aggregation in vitro assay. A thioflavin T assay was performed to measure the effects of RUR on Aβ aggregation. Aβ1-42 
monomer (5 μL of 100 μM) was incubated with PBS or RUR (0.3, 3, or 30 μg/mL) for 48 h at 37 °C (A). Dot blot analysis was performed to measure 
the effects of RUR on Aβ oligomerization. The Aβ1-42 monomer (25 μM) was incubated with PBS or RUR (0.3, 3, or 30 μg/mL) for 24 h at 4 °C 
(B). Furthermore, the Aβ1-42 oligomer (25 μM) was incubated with PBS or RUR (0.3, 3, or 30 μg/mL) for 3 h at 4 °C to measure the effect of RUR 
on Aβ1-42 oligomer degradation (C). Representative bands of A11 and 6E10 were shown (n = 3 per group). The quantification of the A11 band 
were normalized to the 6E10 band in dot blot analysis. The statistical analyses were performed using ANOVA, followed by Dunnett’s post hoc test. 
****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05 vs. Aβ only
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in accumulation and aggregation of phosphorylated tau 
in the brain [60]. Several studies have shown that phos-
phorylated tau accumulates within DNs and blocks the 
trafficking of organelles in neurons [61, 62]. Moreover, 
another previous research showed that Aβ plaque itself 
can promote or facilitate tau aggregation and accumu-
lation in the AD brain [63]. Abnormal aggregation and 
accumulation of phosphorylated tau are associated with 
synaptic loss, neuronal dysfunction, and memory impair-
ment [64, 65]. Therefore, this study evaluated the effects 
of RUR treatment on tauopathy in the brains of 5xFAD 
mice by measuring the hyperphosphorylation of tau pro-
teins at the molecular level. RUR treatment decreased 
the phosphorylation of tau at serine 202 and threonine 
205 in the hippocampus of the 5xFAD mouse by regu-
lation of Akt/GSK-3β signaling pathway. Therefore, our 
results suggest that RUR may alleviate the pathology of 
AD caused by tau hyperphosphorylation. However, since 
we used 5xFAD mice, which do not show neurofibrillary 
tangles [24], further studies would be required to dem-
onstrate the ameliorative effect of RUR on tauopathy in 
a different model of AD such as P301S transgenic mice.

Collectively, this study showed that RUR was able to 
attenuate memory impairment and reduce Aβ accu-
mulation, DNs formation, and phosphorylated ratio of 
tau in the hippocampus of 5xFAD mice. RUR treatment 
could suppress the generation of Aβ through downreg-
ulation of BACE1 within DNs, and directly prevent Aβ 
aggregation and degrade Aβ. Therefore, our results pro-
vide obvious evidence that RUR could effectively slow 
the progression of AD exacerbated by Aβ pathology, 
neuritic dystrophy, and hyperphosphorylated tau, and 
suggest that RUR could be a therapeutic supplements 
for the treatment of AD.
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