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Abstract 

Breast cancer (BC) is a prevalent form of cancer among women. Despite the emergence of numerous therapies 
over the past few decades, few have achieved the ideal therapeutic effect due to the heterogeneity of BC. Drug 
combination therapy is seen as a promising approach to cancer treatment. Traditional Chinese medicine (TCM), 
known for its multicomponent nature, has been validated for its anticancer properties, likely due to the synergy 
effect of the key components. However, identifying effective component combinations from TCM is challenging 
due to the vast combination possibilities and limited prior knowledge. This study aims to present a strategy for dis-
covering synergistic compounds based on transcriptional regulation and chemical structure. First, BC-related gene 
sets were used to screen TCM-derived compound combinations guided by synergistic regulation. Then, machine 
learning models incorporating chemical structural features were established to identify potential compound combi-
nations. Subsequently, the pair of honokiol and neochlorogenic acid was selected by integrating the results of com-
pound combination screening. Finally, cell experiments were conducted to confirm the synergistic effect of the pair 
against BC. Overall, this study offers an integrated screening strategy to discover compound combinations of TCM 
against BC. The tumor cell suppression effect of the honokiol and neochlorogenic acid pair validated the effectiveness 
of the proposed strategy.
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Background
The World Health Organization reports that cancer is the 
second leading cause of death worldwide, with an esti-
mated 10  million deaths in 2020 [1]. Of all new female 
cancers, breast cancer (BC) accounts for about 30% each 
year and is the second leading cause of cancer-related 
death among women [2]. To combat this disease, vari-
ous treatments, such as chemotherapy, hormonotherapy, 
and immunotherapy, have been developed to improve 
clinical outcomes in patients with BC [3]. However, chal-
lenges persist in achieving satisfactory effects due to the 
complex characteristics of the disease. For instance, BC 
exhibits significant molecular, pathological, and clini-
cal heterogeneity. Molecularly, it can be categorized into 
four subtypes: luminal A, luminal B, human epidermal 
growth factor receptor 2-enriched, and triple-negative 
breast cancer. Drug resistance poses a significant chal-
lenge in BC treatment, particularly for advanced-stage 
cancers. Tamoxifen, an estrogen blocker, is a classic hor-
monotherapy that significantly reduces BC recurrence 
and mortality. However, 20–30% of tumors are resistant 
to tamoxifen therapy, presenting a fundamental limita-
tion in clinical practice [4].

Drug combinations are widely recognized for their 
potential to improve treatment efficacy and overcome 
drug resistance when compared to single agents [5]. 
Tumors often develop diverse compensatory mechanisms 
that resist monotherapies. When a drug targets a spe-
cific pathway (e.g., estrogen receptor and human epider-
mal growth factor receptor 2 signaling), tumor cells may 
adapt by utilizing an alternative pathway to sustain their 
growth and survival [6]. For example, approximately 70% 
of BCs may develop resistance to hormonotherapy due 
to PI3K/AKT/mTOR pathway activation [7]. The strate-
gic use of drug combinations targeting different pathways 
or mechanisms can enhance the likelihood of eradicating 
tumor cells and inhibiting the emergence of drug-resist-
ant tumor cells. Furthermore, employing drug combina-
tions permits the use of lower doses of each drug, thereby 
reducing the potential for harmful toxicity [8].

In recent years, numerous potential drug combinations 
for BC treatment have been proposed, including everoli-
mus and exemestane, cetuximab and cisplatin, and doc-
etaxel and doxorubicin [4, 5, 9]. However, exhaustively 
exploring the vast array of possible combinations remains 
a significant challenge, given the substantial investment 
of time and resources required. In silico methods, such as 
computer-aided drug discovery, offer promising advan-
tages for exploring novel drug combinations due to their 
rapidity and efficiency [10]. For instance, Cheng and 
colleagues reported on the specific interaction mecha-
nisms of effective drug combinations in treating diseases 
through protein network analysis [11]. Another study 

identified the key characteristics of the mechanism of 
action for synergistic cancer drugs [12]. Moreover, cer-
tain machine learning (ML) models, particularly deep 
learning (DL) models, have been developed to predict 
synergistic compound combinations for cancers based 
on publicly available high throughput screening datasets 
[13].

Extensive clinical experience spanning thousands of 
years has demonstrated the therapeutic effects of tra-
ditional Chinese medicine (TCM) in addressing health 
issues [14]. TCM, characterized by its use of herbal 
medicine and formulas containing various natural prod-
ucts, is known for its “multi-components, multi-targets, 
multi-activities” approach. The global recognition of 
TCM’s antitumor effects continues to grow through 
modern research [15], which primarily focuses on either 
whole formula or isolated individual compounds [16]. 
While studies on key components with synergistic effects 
could hold great promise for elucidating the advantages 
of TCM, identifying effective component combinations 
from its complex composition remains a significant chal-
lenge. The vast number of possible combinations makes 
experimental identification costly and time-consuming. 
Additionally, unlike approved or candidate small mol-
ecule drugs, only a few natural products with distinct tar-
gets or action mechanisms are suitable for combination 
prediction using in silico methods based on biological 
knowledge. Nevertheless, compound-perturbance tran-
scriptome assays can aid in inferring a systematic influ-
ence at the gene or pathway level, thereby establishing a 
correlation between the compound and disease based on 
the principle of reversal effects [17]. However, the major-
ity of these assays have focused on single-compound 
studies [18]. It is worth noting that gene sets, comprising 
closely related genes, can represent meaningful biological 
events such as biological processes and states, signaling 
pathways, and coexpressed modules, offering valuable 
insights for combination discovery. In addition, chemi-
cal structure features could also contribute to modeling 
the synergistic effects, which has been employed in many 
studies [19].

Here, we developed an integrated computational 
approach to identify potential combinations of TCM 
natural products for the treatment of BC (Fig.  1). We 
collected thousands of gene sets representing various 
biological events to identify marker features associated 
with BC. These gene sets were then utilized to discover 
potential compound combinations with synergistic 
effect. In addition, we established machine learning 
models to predict synergy scores of compound combi-
nations based on chemical structural features. Finally, 
we applied both methods to screen a large number of 
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ingredients (n = 496) for the discovery of compound 
combinations. As a result, we identified the pair of 
honokiol and neochlorogenic acid (HONA) based on 
transcriptional regulation characteristics and high pre-
diction scores, which was further confirmed through 
in vitro cell experiments.

Materials and methods
Collection of gene sets representing comprehensive 
biological events
We obtained 9940 gene sets associated with compre-
hensive biological events from the Molecular Signatures 
Database (https:// www. gsea- msigdb. org/ gsea/ msigdb) 
[20]. Of these, we retrieved 7708 ontology gene sets and 

Fig. 1 Discovery workflow of TCM-derived synergistic combinations against BC. Two in silico methods were applied to identify compound 
combinations with potential efficacy against BC. Effective combinations were identified based on synergistic effect of gene sets and high prediction 
scores from machine learning models, and finally confirmed through in vitro experiments.

https://www.gsea-msigdb.org/gsea/msigdb
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hallmark gene sets representing different biological pro-
cesses or biological states. We then collected gene sets 
associated with signaling pathways in the Kyoto Ency-
clopedia of Genes and Genomes (n = 186) and Reactome 
(n = 1615) databases, two curated pathway databases 
based on evidence from the literature. We also collected 
431 gene sets associated with cancer progression mod-
ules from pan-cancer studies.

Identification of BC‑related differentially expressed genes 
and dysregulated gene sets
The BC transcriptome dataset (1106 tumors and 113 nor-
mal samples) was downloaded from The Cancer Genome 
Atlas (TCGA) project through the TCGAbiolinks pack-
age of R software [21]. The expression count matrix of 
19,934 protein-coding genes was extracted for differ-
entially expressed gene (DEG) analysis via the DESeq2 
pipeline [22]. The thresholds of BH adjusted p-value 
and absolute log2FoldChange were set to 0.01 and 1.0 
to identify DEGs. Over-representation analysis (ORA) 
was performed to identify significant enrichment events 
correlated to BC based on these DEGs using the Clus-
terProfiler R package [23]. A gene set was defined as BC 
progression associated one when its constituent genes 
met the following criteria: (1) contained more than five 
and fewer than 500 genes and (2) had a significant enrich-
ment score with adjusted p-values < 0.01.

Distance calculation between gene sets and BC targets
The human protein-protein interactome (PPI) from a 
previous study [11] yielded a network containing 15,898 
proteins (nodes) and 213,763 interactions (edges). 
Canonical targets associated with BC were retrieved 
from the TTD database [24]. The random walk with 
restart algorithm [25] was used to measure the proxim-
ity of each node to BC targets in the network. The dis-
tances of each gene set to these targets were calculated by 
aggregating the proximity of the constituent genes. The 
background distribution of each gene set was estimated 
by computing the proximity of 1,000 random permuta-
tions to targets. Adjusted p-values below 0.01 from the 
one-tailed test were considered significant.

Redundancy evaluation between gene sets
We used the overlap coefficient (Eq.  1) to assess simi-
larities between paired sets to eliminate redundancies 
of similar gene sets from different sources. Here, PA and 
PB represent sets A and B. The numerator represents the 
overlap between sets, and the denominator represents 
the smaller gene set. A coefficient of >0.5 indicates sig-
nificant similarity. When two similar gene sets were iden-
tified, the one with higher significance in the enrichment 
analysis was retained for the subsequent study.

Transcriptional profiles of the MCF7 cell line
Transcriptional profiles of compounds that perturb the 
growth of the MCF7 BC cell line were retrieved from the 
LINCS database (https:// clue. io/ data/ CMap2 020# LINCS 
2020). For any compound with multiple profiles, the fol-
lowing criteria were applied [26]: (1) the 24-h timepoint, 
and (2) the highest transcriptional activity score. Profiles 
of 2312 compounds recorded in the TTD database were 
retained, and 62 correlated with BC.

Calculation of the wAC index
The reversal effect was calculated as follows (Fig.  2A): 
first, BC up/downregulated (adjusted p-value < 0.01, 
absolute log2FoldChange > 0.5) genes were extracted 
and marked “+” or “−”. Expression profiles affected by 
the compounds were checked for reverse regulation. 
For the next step of the reverse consistency calculation, 
the opposite “−” or “+” labels with the same thresholds 
were assigned to up/downregulated genes in the treat-
ment condition, and the residual genes were marked “0”. 
Thus, a label confusion matrix was generated to measure 
the reversal consistency between chemical perturba-
tion and disease dysregulation at the gene set level. The 
AC1 (Agreement Coefficient 1) index was adopted by 
the observed and expected agreement proportions and 
implemented by the irrCAC R package in our study. This 
method is less biased for imbalanced categories (e.g., 
when most genes are upregulated in a gene set) compared 
to Cohen’s Kappa [27]. Additionally, we also considered 
importance of different genes within the set, based on 
their betweenness centrality in the PPI network. The 
consistency of genes with higher importance contributes 
more to the final index, resulting in the weighted AC1 
(wAC). For each gene set, the wAC index ranges from −1 
to 1, with higher values indicating stronger reverse con-
sistency between breast cancer (BC) dysregulation and 
compound treatment.

Measurement of the reversal effects of compounds 
against BC
According to the index, we identified signature gene sets 
for BC. First, the wAC index for a given gene set of BC 
drugs (positive group) was compared using Wilcoxon 
testing to non-BC drugs (negative group). We also col-
lected MCF7 sensitivity (natural log of  IC50) data from 
the Genomics of Drug Sensitivity in Cancer database 
(GDSC, https:// www. cance rrxge ne. org). Specifically, 
129 drugs from GDSC1 and 89 drugs from GDSC2 were 
selected, as they overlapped with the LINCS drugs. We 
then calculated the correlation between the drug wAC 

(1)Overlap(PA,PB) = |PA ∩ PB|/min (|PA|, |PB|)

https://clue.io/data/CMap2020#LINCS2020
https://clue.io/data/CMap2020#LINCS2020
https://www.cancerrxgene.org
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index and sensitivity data for each gene set. If the wAC 
index of one set had higher values among BC drugs and 
negatively correlated to the natural log of  IC50, which 
indicated a positive correlation with drug sensitivity, it 

was regarded as an essential gene set whose reverse regu-
lation was thought to be associated with an underlying 
therapeutic role in BC. p-values < 0.01 were considered 
significant for all comparison and correlation analyses.

Fig. 2 Recognition of signature gene sets based on the wAC index. A Schema of the wAC index calculation. For a specific gene set dysregulated 
in disease, the wAC index of one chemical perturbation can be calculated as follows: (1) extract DEGs of the dysregulated gene set; (2) label DEGs 
under disease conditions and chemical perturbation; (3) generate the consistency matrix; (4) design the corresponding weighted matrix; (5) 
and calculate the wAC index. B Box plots showing the significant differences of the wAC index on various gene sets between 62 BC drugs (Positive) 
and 2250 other drugs (Negative). C Scatter plots with fitted lines showing the correlation between the wAC index and natural log of  IC50 in MCF7 
cells of GDSC1 and GDSC2 drugs across signature gene sets. Significance was assessed by Pearson correlation analysis
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Discovery of combination with synergistic regulation 
of gene sets
First, we gathered transcriptional profiles of 496 TCM-
derived compounds on MCF7 cells from the ITCM data-
base [28], and then the wAC index for each gene set was 
calculated. For each signature gene set Pi , the regulation 
score of a single compound D1 is represented by SD1,Pi . 
Based on the 50th and 80th quantiles of the wAC index 
among BC drugs, SD1,Pi of each single compound was 
graded as 0 (0–50%), 0.5 (50–80%), or 1 (80–100%), indi-
cating weak, moderate, or strong effects for the gene set. 
For each compound D1 , we directly summed the grad-
ing scores ( SD1,Pi ) of the compound in all signature gene 
sets to represent the overall regulation score (denoted 
PSD1

 , Eq. 2, where n represents the number of signature 
gene sets). Typically, a single compound cannot compre-
hensively regulate all the signature gene sets. Therefore, 
we proposed another index (denoted TCSD1,D2

 , Eq.  3) 
to identify the potential combination ( D1,D2 ) with syn-
ergistic effect for more complete regulation. For each 
combination of two compounds, we first summed the 
regulation scores of the compounds on the same gene 
set Pi , capping the maximum value at 1. Then, the above 
scores of all signature gene sets were aggregated as TCS 
values. Finally, combinations with higher TCS values 
were selected for further screening.

Drug combination data collection and ML modeling
Initially, four types of synergy scores (ZIP [zero interac-
tion potency], Loewe, HSA, Bliss) [29] for 4966 unique 
combinations (involving 101 drugs) in the MCF7 BC cell 
line were obtained from the NCI-ALMANAC project 
and downloaded from SYNERGxDB (https:// www. syner 
gxdb. ca) [30]. Outliers for each type of synergy score 
were discarded based on the standard 1.5× interquartile 
range rule, and the remaining samples were subjected to 
min-max normalization. Three classic chemical finger-
print descriptors—MACCS (166 bits), CDK Substructure 
(307 bits), and PubChem (881 bits)—were selected based 
on the PaDELPy software [31] and each fingerprint of the 
two drugs was concatenated to represent the structural 
features of the combination. Each combination had two 
sample inputs, considering the concatenation order (e.g., 
Drug A–Drug B and Drug B–Drug A).

(2)PSD1
=

n
∑

i=1

SD1,Pi

(3)TCSD1,D2
=

n
∑

i=1

min
(

SD1,Pi + SD2,Pi , 1
)

The overall data were firstly divided into training and 
test sets with an 80:20 ratio. Of note, combinations 
involving the same compounds but in different orders 
were consistently assigned to the same set. Subsequently, 
9 machine learning regression models (ExtraTreesMSE, 
RandomForestMSE, XGBoost, CatBoost, LightGBMXT, 
LightGBM, LightGBMLarge, NeuralNetTorch, and Neu-
ralNetFastAI) were constructed using fivefold cross-
validation (CV) on the training set and evaluated on the 
test set using the Autogluon tool [32]. Multiple metrics, 
including root mean square error (RMSE), R squared 
 (R2), mean absolute error, and median absolute error 
were computed. The optimal machine learning algorithm 
for each modeling context—defined by the input finger-
print and the output synergy metric—was selected based 
on the lowest RMSE value during cross-validation. For 
evaluation on the test set, the bagged predictions were 
averaged across the five models from each fold. When 
predicting the synergy scores for a TCM-derived combi-
nation, both concatenation orders of the fingerprints for 
the two compounds were utilized as inputs, and the aver-
age of these predictions was considered the final result.

Cell cultures
The MCF7 human BC cell line was obtained from the 
Shanghai Institute of Biochemistry and Cell Biology, Chi-
nese Academy of Sciences (SIBCB, CAS). The cells were 
cultured in 1640 medium (Gibco, 11875-093) with 1% 
penicillin–streptomycin (HyClone, SV30010) and 10% 
fetal bovine serum (Gibco, 10091148). Cultures were 
maintained at 37 °C (Thermo Fisher, USA) and 5%  CO2.

Cell proliferation assay and combination index
MCF7 cells were plated in 96-well plates (5000  cells/
well), incubated overnight, and then treated with various 
concentrations of HO, NA, and HONA for 24  h. After 
treatment, 10  μL of CCK-8 solution (Meilunbio, China) 
was added, and the absorbance was measured at 450 nm 
using a BioTek Cytation 5 (Agilent Technologies, USA) 
after 2  h. Cell viability was calculated as follows: cell 
viability = [(AE − AB)/(AC − AB)] × 100%, where A is the 
absorbance, E is the experimental well, C is the control 
well, and B is the blank well. The Chou-Talalay method 
[33] was used to calculate the combination index (CI) to 
evaluate whether the combined effect of HONA is syn-
ergistic (CI < 1), additive (CI = 1), or antagonistic (CI > 1).

Cell cycle and apoptosis assay
MCF7 cells were plated in 6-well plates at 2 ×  105  cells/
well. After exposure to various concentrations of HO, 
NA, and HONA for 24 h, the cells were collected, washed 
with precooled PBS, and suspended in precooled 70% 
ethanol overnight at 4 °C. After removing the fixative, the 

https://www.synergxdb.ca
https://www.synergxdb.ca
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cells were stained with 25 µL of propidium iodide, 10 µL 
of RNase A, and 500  µL of staining buffer (Cell Cycle 
Analysis Kit, Meilunbio, China). The samples were then 
incubated at 37 °C in the dark for 30 min and analyzed by 
flow cytometry (Beckman, USA).

Apoptosis assays were performed by collecting the 
treated cells, washing them with precooled PBS, and 
resuspending them in a binding buffer. Cells were stained 
with 5  μL of Annexin V-FITC and 10  μL of propidium 
iodide (Annexin V-FITC/PI Apoptosis Detection Kit, 
Meilunbio, China), gently mixed, incubated in the dark 
at room temperature for 10  min, and analyzed by flow 
cytometry.

Reactive oxygen species measurement
The reactive oxygen species (ROS) assay kit (Beyotime, 
S0033S) was used to measure ROS levels after a 24-h 
exposure to HO, NA, and HONA. DCFH-DA was diluted 
in a serum-free culture medium to 10 µM, then added to 
the cells and incubated for 20 min in a 37 °C cell incuba-
tor. The cells were analyzed by flow cytometry.

Colony formation assay
MCF7 cells were plated in 12-well plates (1.5 ×  105 cells/
well) and allowed to adhere overnight. Varying concen-
trations of HO, NA, and HONA were added and incu-
bated for 24  h. The cells were reseeded in 6-well plates 
(1000 cells/well) and incubated for two weeks, replacing 
the culture medium every 3 days. Colonies were stained 
with crystal violet and counted.

Results
Identifying 860 key gene sets related to BC
To gain a comprehensive understanding of the essential 
biological events of BC, we initially gathered 9940 gene 
sets (Supplementary Table  1). DEG analysis and ORA 
were conducted to identify critical genes related to BC by 
comparing expression profiles of tumor and normal sam-
ples. This led to the detection of 5015 significant DEGs, 
including 3018 upregulated and 1997 downregulated 
genes (Supplementary Table  2). Based on these DEGs, 
860 gene sets were selected according to ORA enrich-
ment scores (Supplementary Table  2). In summary, 15 
gene sets defined biological states; 570 sets represented 
biological processes; 13 and 145 sets described signaling 
pathways of Kyoto Encyclopedia of Genes and Genomes 
and Reactome, respectively; and 117 sets depicted cancer 
modules.

Acquiring 115 low‑redundancy gene sets close to BC 
targets
The distance of gene sets to disease targets in the PPI net-
work was evaluated to refine BC-related gene sets. One 

PPI network of over 15,000 proteins was constructed, 
and 69 were marked as BC targets according to the TTD 
database. For each gene set, the overall distance to dis-
ease targets was calculated using the random walk with 
restart algorithm. As a result, 318 of 860 gene sets were 
selected according to the distance permutation assay 
(Supplementary Table  3). We also discarded those sets 
with high similarity to others based on the overlap coeffi-
cient index, leaving 115 low-redundancy sets for an addi-
tional study (Supplementary Table 4).

Inferring nine signature gene sets based on the wAC index
To identify signature gene sets associated with BC ther-
apy, the wAC index was proposed to evaluate the tran-
scriptional reversal effect of compounds based on gene 
sets (Fig.  2A). Two identification analyses were per-
formed on compounds that generated substantial pertur-
bation of transcriptomic data of LINCS project and other 
public datasets. We prioritized those sets that could be 
affected by BC drugs, showing higher wAC values than 
non-BC drugs (Fig. 2B). Gene sets with a negative corre-
lation to log-transformed  IC50 in MCF7 cells, indicating 
a significant association with drug sensitivity, were also 
investigated (Fig. 2C). These analyses yielded nine signa-
ture gene sets for BC treatment (Table 1, Supplementary 
Table 5). In summary, one set was related to the cancer 
module; two sets were associated with biological states, 
and the remainder belonged to different biological pro-
cesses. Gene sets ranged from 89 to 479, and more than 
half of the genes were found to be aberrantly expressed 
in BC.

Screening candidate TCM‑derived combinations based 
on synergy regulation
Combinations capable of exerting comprehensive tran-
scriptomic regulation on key breast cancer signature gene 
sets are more likely to exhibit synergistic effects. To iden-
tify possible TCM compound combinations with syner-
gistic effects against breast cancer, 496 natural products 
that lead to transcriptomic perturbations in MCF7 cells 
were first collected from the ITCM database. Then, the 
wAC indexes of these compounds on the nine signature 
gene sets were calculated. Regulation scores were graded 
based on the corresponding score distribution of BC 
drugs. For example, the 50th and 80th quantiles of the 
wAC index for BC drugs on MODULE-218 were 0.48 
and 0.68, and thus three intervals (i.e., 0–0.48, 0.48–0.68, 
and 0.68–1.0) were used for grouping. As a result, 469, 
25, and 2 compounds were classified as weak, moderate, 
and strong. The effect scores were recorded as 0, 0.5, and 
1 (Fig. 3A).

The PS and TCS scores were introduced to evaluate 
the synergy regulation for each single compound and 
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two-compound combination, respectively. As a result, 
129 compounds showed a reversal effect (PS value > 0) 
on at least one gene set (Fig. 3B, Supplementary Table 6). 
The top 50 compounds with the highest PS values are 
presented in Fig.  3C. The S14S25 compound (Cinob-
ufagin) showed a remarkable effect on all gene sets. We 
estimated the TCS values of 8256 possible combina-
tions for these 129 compounds (Fig. 3D, Supplementary 
Table 7). Given a threshold greater than eight, 11 candi-
date combinations were identified, indicating significant 
regulation on all signature gene sets.

Identifying potential combinations based on synergy 
prediction
Chemical structure-based ML models were established 
to predict the synergy scores of compound combina-
tions against MCF7 cells. Three chemical fingerprints 
(MACCS, PubChem, and Substructure) were used to 
train regression models for different synergy meas-
urements (ZIP, Loewe, HSA, and Bliss), where one 
fingerprint was used as the input, and one synergy 
measurement was used as the output in each model set-
ting. For each setting, nine ML algorithms were built 
through fivefold cross-validation on the training set and 
evaluated on the test set. We found that models of the 
ZIP measurement had lower RMSE values compared 
to other measurements, indicating the measurement 
might be more predictable according to the underlying 
chemical features captured by the fingerprints (Fig.  4A, 
Supplementary Table  8). The NeuralNetFastAI model 
demonstrated the lowest RMSE values for ZIP synergy 
measurement with each fingerprint as the input during 
cross-validation (Fig. 4B). Notably, the NeuralNetFastAI 
model for ZIP measurement with three different finger-
print types also exhibited excellent performance on the 
test set, as evidenced by the lowest RMSE and highest  R2 
values compared to other models (Fig. 4B, C).

In summary, the NeuralNetFastAI models for ZIP syn-
ergy using MACCS (CV RMSE: 0.035, Test RMSE: 0.035, 
Test  R2: 0.95), PubChem (CV RMSE: 0.038, Test RMSE: 
0.042, Test  R2: 0.9), and Substructure (CV RMSE: 0.061, 
Test RMSE: 0.062, Test  R2: 0.84) fingerprint types gener-
ally demonstrate the best performance. Besides, we fur-
therly prioritize features that contribute to modelling for 
each fingerprint type through permutation importance 
analysis (Supplementary Table  8). Therefore, we used 
these models to predict the ZIP scores for the 11 com-
binations screened by synergy regulation and identified 
that one pair, S10S12 (Honokiol, HO) and S2S3 (Neo-
chlorogenic acid, NA), termed HONA, obtained the 
highest average predicted score (Fig. 4D, Supplementary 
Table  9), suggesting a potential synergistic effect of the 
two TCM-derived compounds (Fig. 4E). In addition, the 
DDI (Drug-Drug Interaction) prediction [34] to assess 
the potential toxicity of this combination, suggesting that 
HONA could exhibit a potentially favorable safety profile 
(Supplementary Table 10).

Cell experiment verification of the synergistic effects 
of HONA
To assess the combined impact of HO and NA (HONA), 
we initially studied the individual effects of varying con-
centrations of HO and NA on MCF7 cell viability. Our 
findings revealed a dose-dependent inhibition of MCF7 
cell viability by both HO and NA, with HO showing 
particularly strong effects (Fig. 5A, B). Subsequently, we 
investigated their combined effects at different concen-
trations, observing a significant increase in cell viabil-
ity compared to individual HO treatments (Fig. 5C). To 
quantitatively evaluate the optimal synergy of HONA, we 
calculated the CI for each concentration experiment. CI 
values for HONA were predominantly below 1 when the 
concentration of HO exceeded 1 μM, indicating a syner-
gistic effect (Fig. 5D). Notably, the combination of 10 μM 

Table 1 The summary information for nine signature gene sets

ID Type Name No. of genes No. of DEGs Overlap 
coefficient

MODULE-218 MODULE MODULE 53 403 284 0.109

HALLMARK-9 HALLMARK G2M CHECKPOINT 200 128 0.220

HALLMARK-14 HALLMARK ESTROGEN RESPONSE LATE 200 137 0.070

GOBP-2149 GOBP DEVELOPMENTAL MATU RAT ION 294 169 0.082

GOBP-6268 GOBP RESPONSE TO ALCOHOL 236 152 0.263

GOBP-1462 GOBP RESPONSE TO METAL ION 350 199 0.206

GOBP-2423 GOBP REGENERATION 188 109 0.165

GOBP-1454 GOBP RESPONSE TO EXTRACELLULAR STIMULUS 479 253 0.150

GOBP-4886 GOBP POSITIVE REGULATION OF CELL DIVISION 89 55 0.090
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HO and 30  μM NA stood out, with a minimum CI of 
0.306, demonstrating substantial synergy.

A more detailed investigation of the combination at 
optimal concentrations was carried out using a cell apop-
tosis assay (Fig. 6A). The findings indicated a significant 

increase in early apoptosis, suggesting a stronger pro-
apoptotic effect compared to each individual agent. In 
addition, the drug combination significantly arrested 
the S-phase of MCF7, as observed in the cell cycle 
assay (Fig.  6B). ROS levels were measured to assess the 

Fig. 3 Regulatory effects of 496 TCM-derived components and their combinations on nine signature gene sets. A Density plots show 
the distribution of the wAC index of TCM compounds upon one gene set (MODULE-218), categorized into three grades based on the 50th and 80th 
percentiles of BC drugs. B Bar plots of the wAC-graded results of TCM compounds for each gene set. C Heatmap of the wAC-graded scores 
of the top 50 TCM compounds with the highest TCS values. D Violin plot of the TCS values of all 8256 TCM compound combinations. The red dashed 
line indicates the threshold of eight. Eleven combinations above the threshold are labeled
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oxidative stress induced by the compound combination. 
There was a significant increase in ROS production fol-
lowing combination administration, indicating that the 
synergistic effect involves the generation of oxidative 
stress (Fig.  6C). Finally, the impact of the compound 
combination on the long-term survival and clonogenic 
potential of MCF7 was evaluated by colony formation 
assays. Consistent with the previous results, the combi-
nation produced a remarkable reduction in colony for-
mation compared to each single agent (Fig. 6D).

Discussion
BC, the most common malignant tumor in women, led to 
over 685,000 reported deaths and an estimated 2.3  mil-
lion new cases in 2020 [1]. Over the years, various treat-
ment options such as surgery, chemotherapy, radiation 
therapy, hormone therapy, targeted therapy, and immu-
notherapy have collectively contributed to improving 
survival. However, due to the significant heterogeneity in 
disease pathology, genomic alterations, gene expression, 
and the tumor microenvironment, BC exhibits resistance 

Fig. 4 Machine learning modeling based on chemical structural features for synergy prediction. A Boxplots showing the RMSE distribution 
in the cross-validation set for nine ML algorithms in different model settings. Each model used one of three compound fingerprint types 
as the input and one of four synergy measurements as the output. B Bar plots show the RMSE values of nine machine learning algorithms with each 
of three fingerprint types as the input and ZIP synergy score as the output. Blue bars refer to cross-validation on the training set, and yellow 
bars refer to evaluation on the test set. RMSE root mean square error. CV cross-validation. C Line plots show the  R2 values on the test set of nine 
machine-learning algorithms with each of three fingerprint types as the input and ZIP synergy score as the output. D Line plots show the predicted 
scores of 11 TCM-derived combinations using the best model of ZIP measurement with each of the three fingerprint types as the input. 
Combinations are sorted by the average score (the first one is marked in red). E 2D structures of Honokiol and Neochlorogenic acid
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to many therapies [35]. Combining drugs has gained 
attention as it could make it challenging for tumor cells 
to develop resistance to multiple drugs with synergistic 
action. While previous computational models for com-
bination discovery are most based on distinct targets or 
mechanism of action, they have been relatively limited for 
natural products of TCM [11, 12, 36]. Given the extensive 
history and multicomponent nature of TCM, it presents 
a complex landscape for discovering effective combina-
tion therapies. Meanwhile, synergistic combinations are 
more effective in explaining its therapeutic effects on 
breast cancer and other diseases compared to individual 
compounds. Here, our study integrates bioinformatics 
and machine learning to systematically uncover potential 
synergistic TCM-derived compounds for BC treatment. 
Using omics data, we applied the hypothesis of transcrip-
tional regulation across signature gene sets to identify 
synergistic combinations. With the aid of cheminformat-
ics, we then encoded compound structures and leverage 
high-throughput screening data to build machine learn-
ing models targeting BC-specific synergy. This integrative 
computational strategy not only provides a more system-
atic and data-driven method for discovering compound 
combinations compared to traditional trial-and-error 

ways in clinical settings, but also offer new insights for 
the research of compound-based Chinese medicine [37].

The identification of gene sets that have a compound 
combination with synergistic regulation on multiple BC-
related biological events could be crucial in overcoming 
resistance and reducing side effects for better therapeutic 
outcomes. In our study, we initially identified 860 gene 
sets based on DEGs and ORA in TCGA-Breast Invasive 
Carcinoma cohorts. We then narrowed it down to 115 
low-redundancy sets closely linked to BC targets. We 
introduced the wAC index to infer the potential associa-
tion between drugs and diseases by evaluating the reverse 
consistency of transcriptional regulation upon gene sets. 
This led us to pinpoint nine signature gene sets whose 
reverse regulation was specific to BC drugs compared 
with non-BC drugs and significantly correlated with drug 
sensitivity on MCF7 cells. Some of these gene sets are 
known to be closely associated with BC, such as HALL-
MARK-9 and GOBP-4886, which are involved in regulat-
ing cell proliferation, a critical factor in developing and 
treating many tumors [38]. In addition, HALLMARK-14 
is associated with estrogen signaling, which plays a role 
in the progression of BC, as the majority of human BCs 
initiate as estrogen-dependent [39]. The GOBP-6268 

Fig. 5 Effects of HO and NA on the proliferation of MCF7 cells. A, B MCF7 viability after treatment with different concentrations of HO or NA. C 
represents the untreated control group, where cells were cultured under standard conditions without exposure to HO or NA. Statistical analysis 
was performed using GraphPad Prism 7.0 software (La Jolla, CA, USA) and the statistical significance was evaluated by a two-tailed Student’s t-test. 
*p < 0.05, **p < 0.01, and ***p < 0.001. Data are shown as mean ± SD (n = 3). C MCF7 viability after treatment with different concentrations of HO 
or HONA. C represents the untreated control group. Data are shown as mean ± SD (n = 3). D CI values
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process focuses on the response to alcohol, and recent 
research shows that alcohol has a complex impact on BC 
development, including disruption of the extracellular 
matrix and promotion of epithelial-mesenchymal tran-
sition [40, 41]. Lastly, GOBP-1462 highlights the role of 
metal ions in crucial biological processes, including cell 
signaling, DNA synthesis and repair, and redox reactions 
[42].

Machine learning models were trained to predict the 
synergy of compound combinations in MCF7 BC cells 
based on their chemical structural features. Four syn-
ergy measurements (ZIP, Loewe, HSA, and Bliss) were 
considered, and it was observed that the models based 
on the ZIP measurement generally exhibited satisfactory 
performance. This suggests that the machine learning 
models for the ZIP measurement were more effective at 

Fig. 6 Synergistic investigation of HONA at concentrations with the lowest CI value in MCF7 cells in A cell apoptosis, B cell cycle, C ROS, and D 
colony formation assays. For each assay, the four subfigures from left to right represent the untreated control, 10 μM HO, 30 μM NA, and 10 μM HO 
plus 30 μM NA
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learning from the structural features of compound com-
binations. The ZIP synergy metric was highlighted for its 
ability to capture drug interaction relationships by com-
paring changes in the potency of dose-response curves 
between individual drugs and their combinations [43]. 
Three common fingerprint types—MACCS, PubChem, 
and Substructure—were used to encode substructure and 
pattern features from different perspectives [44]. The best 
machine-learning model built on each fingerprint within 
the Autogluon framework was employed to predict the 
ZIP synergy scores of the screened combinations from 
the previous step. Besides, we performed the permuta-
tion importance analysis to assess the relative signifi-
cance of features across different fingerprint types, which 
could optimize future combination designs.

Thereafter, we combined transcriptional regulation 
and structure-based prediction models to investigate 
the synergy of 496 TCM compounds against BC. First, 
we postulated that compounds capable of significantly 
perturbing the expression of BC-related signature gene 
sets may exhibit synergistic regulatory effects that dis-
rupt critical cancer pathways. Second, we hypothesized 
that compounds with specific chemical structure fea-
tures may enhance or potentiate each other’s therapeu-
tic effects. For the former method, 129 compounds with 
non-zero PS values on signature gene sets were identified 
for subsequent screening. Notably, S14S25 (Cinobufagin) 
demonstrated a significant effect on all signature gene 
sets, ranking first among the 129 TCM compounds. This 
active natural product is derived from the dried secretion 
of the postauricular gland or skin gland of Bufo gargari-
zans Cantor or Bufo melanostictus Schneider, common 
in Chinese medicine [45, 46]. Recent studies have high-
lighted its potential therapeutic role in BC [47], validat-
ing the rationale behind the screening methods based 
on gene sets. Subsequently, we screened 11 candidate 
combinations based on the TCS evaluation, all of which 
exhibited TCS values above 8, indicating a significant 
reversal effect on all signature gene sets. Finally, based 
on the ZIP synergy scores predicted by ML models, the 
combination of S10S12 (HO) and S2S3 (NA), termed 
HONA, was identified as a promising compound pair for 
BC treatment.

Initially, we evaluated the potential toxicity of HONA 
by the Way2Drug tool and the results suggested the 
combination could have low probabilities of common 
adverse effect and weak interaction mediated by P450. 
HO, a lignan compound derived from Magnolia species 
such as Magnolia grandiflora and Magnolia dealbata, 
demonstrates pleiotropic effects, particularly antitumor 
bioactivity [48, 49] and low toxicity in many in vitro and 
in  vivo studies [50] This compound can reversely regu-
late over half of the biological events associated with BC, 

including GOBP-4886, GOBP-1454, GOBP-2423, GOBP-
1462, GOBP-6268, GOBP-2149, HALLMARK-14. These 
pathways are central to BC progression, as they influence 
hormone response, cellular repair, stress adaptation, and 
proliferation. NA is an isomer of chlorogenic acid and 
can be found in various natural plants, including hon-
eysuckle. It has been reported to possess anti-inflamma-
tory and antitumor properties [51, 52] and show safety 
in vitro [53, 54]. In our transcriptomic analysis (Fig. 3C), 
NA could act on MODULE-218 and HALLMARK-9 
compared with HO, indicating an essential role in DNA 
integrity and damage checkpoint signaling before mito-
sis. This could be the potential synergistic mechanism 
underlying the improved inhibition of BC cells, mean-
ing that HO and NA could synergistically impair tumor 
growth by targeting distinct, yet interconnected, onco-
genic processes. Although the machine learning mod-
els used in this study cannot explicitly attribute synergy 
to specific structural fragments due to their black-box 
nature, feature importance analyses were conducted 
from three fingerprints (MACCS, PubChem, and CDK 
substructures) to identify the substructure features that 
contribute most to the model predictions.

Finally, in vitro experiments for HONA confirmed the 
dose-dependent responses to each individual compound 
and the synergistic effect of the compound pair. HO 
demonstrated a potent dose-dependent inhibitory effect, 
while NA also showed significant inhibition, albeit to a 
lesser extent. Importantly, their combination (HONA) 
consistently outperformed individual treatments in 
reducing cell viability, particularly at higher concen-
trations of HO. To quantitatively assess the synergis-
tic effects of different dose combinations, we calculated 
combination index (CI) values using the Chou-Talalay 
method. Among all tested combinations, 10  μM HO 
combined with 30  μM NA yielded the lowest CI value 
(0.306), indicating the strongest synergy. Based on the 
optimal concentration combination, additional assays on 
cell apoptosis, cell cycle, ROS levels, and colony forma-
tion provide further in vitro validation of the synergistic 
effect of HONA against BC.

Conclusions
In summary, our research represents a significant step 
forward in understanding the combined potential of 
TCM compounds for BC treatment. The HONA com-
bination validated by experimental assays serves as 
a promising example of the effectiveness of our inte-
grated computational approach. Moving forward, fur-
ther pharmacological investigations, including animal 
experiments and toxicity assessments, will be essential 
to fully confirm the synergistic benefits and ensure the 
safety of these findings for their potential application 
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in the treatment of breast cancer. Finally, our study’s 
integration of expression-based regulation synergy and 
structure-based machine learning model prediction 
presents an innovative method for identifying com-
binations of TCM natural products for BC, with the 
potential for extension to other common cancers in the 
future.
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