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Utilization of natural products in diverse 
pathogeneses of diseases associated with single 
or double DNA strand damage repair
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Abstract 

The appearance of DNA damage often involves the participation of related enzymes, which can affect the onset 
and development of various diseases. Several natural active compounds have been found to efficiently adjust 
the activity of crucial enzymes associated with single or double-strand DNA damage, thus demonstrating their prom-
ise in treating diseases. This paper provides an in-depth examination and summary of these modulation mechanisms, 
leading to a thorough review of the subject. The connection between natural active compounds and disease devel-
opment is explored through an analysis of the structural characteristics of these compounds. By reviewing how dif-
ferent scholarly sources describe identical structures using varied terminology, this study also delves into their effects 
on enzyme regulation. This review offers an in-depth examination of how natural active compounds can potentially 
be used therapeutically to influence key enzyme activities or expression levels, which in turn can affect the process 
of DNA damage repair (DDR). These natural compounds have been shown to not only reduce the occurrence of DNA 
damage but also boost the efficiency of repair processes, presenting new therapeutic opportunities for conditions 
such as cancer and other disease pathologies. Future research should focus on clarifying the exact mechanisms 
of these compounds to maximize their clinical utility and support the creation of novel approaches for disease pre-
vention and treatment.

Highlights 

1.	 The lactone constituent triptolide effectively modulates key enzymes involved in  SSBs like  BER, NER or  DSBs 
like NHEJ or HRR, thereby impacting the initiation and progression of tumorigenic diseases.

2.	 The flavonoid compound quercetin not  only  regulates OGG1 in  BER, but  also  modulates RAD51 and  BRCA1 
in HRR, thereby impacting the developments and deteriorations of multiple maladies.

3.	 The alkaloid berberine, a natural compound, has shown effectiveness in treating TNBC and NSCLC. It achieves this 
not only by regulating XRCC1 in the BER pathway but also by influencing the NER process.
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Introduction
DNA damage represents a substantial risk to genomic 
stability, necessitating the activation of a range of cellular 
mechanisms known collectively as DNA damage repair 
(DDR). These processes work together to effectively 
address and minimize the damage, ensuring the preser-
vation of cellular functions [1, 2]. DNA damage primarily 
manifests in two forms: single-strand breaks (SSBs) and 
double-strand breaks (DSBs). These two types of damage 
represent the major classifications of DNA lesions, each 
characterized by distinct features and implications for 
cellular function and genomic stability. The DDR system 
operates through five critical repair pathways: base exci-
sion repair (BER) for addressing small base lesions, nucle-
otide excision repair (NER) for removing bulky adducts, 
mismatch repair (MMR) for correcting replication errors, 
non-homologous end joining (NHEJ) for repairing DSBs, 
and homologous recombination repair (HRR) for resolv-
ing complex DNA damage. Each pathway specifically 
targets distinct types of DNA damage [3–5]. Moreover, 
specific forms of DNA damage employ dedicated toler-
ance pathways, such as translesion synthesis (TLS) mech-
anisms [6, 7]. Although cells exhibit varied responses to 
different types of DNA damage, including SSBs, DSBs 

and base modifications, an underlying and consistent set 
of mechanisms oversees the repair and handling of such 
damages [1, 8]. The repair of DNA damage can be directly 
facilitated by key enzymes in the pathway [9]. Most dam-
age, however, is rectified through a sequential cascade of 
catalytic events facilitated by multiple key enzymes.

SSBs are the most frequent form of DNA lesions, char-
acterized by interruptions in the DNA double helix. 
These lesions are frequently associated with nucleotide 
depletion and damage to the 5ʹ and 3ʹ termini at the break 
site [10]. Delayed repair of SSBs can severely compro-
mise genomic stability and threaten cell viability. This 
delay not only disrupts the integrity and functionality of 
genetic material but also impairs cellular proliferation 
and the maintenance of normal physiological processes. 
Without prompt intervention to repair these breaks, the 
stability that underpins the entire cellular and genetic 
machinery is placed at significant risk, potentially lead-
ing to adverse consequences for cellular survival [11]. The 
cells have developed a rapid repair mechanism known 
as single-strand break repair (SSBR) in response to this, 
ensuring efficient DNA damage restoration [12]. The 
SSBR process is often categorized as a specialized variant 
of BER because it involves key enzymes primarily linked 
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with the BER pathway. Importantly, poly (ADP-ribose) 
polymerase 1 (PARP1) and X-ray repair cross-comple-
menting protein 1 (XRCC1) are two critical enzymes 
that significantly contribute to orchestrating SSBR. Their 
collaborative activities are essential for ensuring effi-
cient and accurate repair of SSBs in DNA, highlighting 
the close association between SSBR and the overall BER 
mechanism [13, 14]. Most SSBs are corrected via a highly 
efficient and universal SSBR pathway. This pathway can 
be broken down into four key phases. In the first phase, 
the detection of SSBs triggers the activation of the repair 
process. The second stage entails processing the DNA 
ends, during which obstructive components at both the 
5ʹ and 3ʹ ends are removed. Following the identification 
of SSBs, the DNA gap is filled during the DNA gap fill-
ing stage. Subsequently, in the DNA ligation stage, the 
repaired segments are covalently joined. To summarize, 
the effective SSBR mechanism that addresses the major-
ity of SSBs involves four essential stages: recognition of 
SSBs, processing of DNA ends, filling of DNA gaps, and 
ligation of DNA [15].

The induction of DSBs can result in severe genomic 
damage, leading to chromosomal rearrangements that 
ultimately trigger cell death. A wide array of human 
diseases, including developmental abnormalities and 
various forms of cancer, originate from this mecha-
nism [16–19]. The two primary mechanisms of DSBs 
that predominate in mammals are NHEJ and HRR [20]. 
The onset of the NHEJ mechanism starts when a com-
plex formed by the proteins Ku70 and Ku80 (referred to 
jointly as Ku) identifies DNA DSBs [21]. The catalytic 
subunit of DNA-dependent protein kinase (DNA-PKcs) 
exhibits strong interaction with DNA ends, a process 
that is significantly amplified when Ku attaches to these 
areas [22, 23]. The nuclease Artemis is tightly associated 
with DNA-PKcs and is likely recruited in concert with 
this kind of kinase. Nucleotide incorporation is carried 
out by polymerases belonging to the Pol X family, nota-
bly Pol μ and Pol λ. The DNA ligase IV (LIG4) complex, 
comprising XRCC4, XLF, and possibly PAXX, is crucial 
for sealing DSBs [24, 25]. Unlike NHEJ, which is active 
in repairing DSBs across all phases of the cell cycle, HRR 
primarily functions during the S and G2 phases [26]. 
HRR involves a sequence of interconnected downstream 
elements that utilize DNA strand invasion and template-
guided DNA repair synthesis. Through these processes, 
HRR ensures precise and accurate repair, thus preserv-
ing the integrity and fidelity of the genetic material [27]. 
The HRR process can be systematically divided into three 
sequential phases. First, the resection of the ends of DSBs 
occurs, which is a critical initial step that prepares the 
damaged DNA for subsequent repair. Next, the synthesis 
of the missing sequence takes place, relying on a template 

to accurately reconstruct the deleted portion of the DNA 
strand. Finally, the process culminates in the annealing 
and ligation stages, where the newly synthesized DNA 
segments are accurately aligned and covalently joined. In 
summary, HRR proceeds through three sequential steps: 
DSB end resection, template-directed sequence synthe-
sis, and subsequent annealing and ligation, ensuring the 
faithful repair of damaged DNA [28]. HRR preferentially 
utilizes sister chromatids as templates over homologous 
chromosomes [29], the process necessitates strand inva-
sion facilitated by the recombinase RAD51 [30].

The relationship between DNA damage and immuno-
therapy has garnered considerable attention in recent 
years, emerging as a critical area of study in oncology. 
DNA damage is crucial not only in initiating and advanc-
ing cancer but also in significantly influencing the effec-
tiveness of immunotherapy. DNA damage plays a dual 
and crucial role, promoting harmful processes within 
the body while also influencing the effectiveness of treat-
ments that leverage the immune system to fight disease. 
This dual nature underscores its essential impact on 
both the development of cancer and the formulation of 
therapeutic approaches. Investigations reveal that dam-
age to DNA can boost the immunogenic potential of 
cancer cells, leading to enhanced immune system activity 
against such malignancies. For instance, the inhibition of 
DDR mechanisms may potentiate tumor cells’ sensitivity 
to immune checkpoint inhibitors. Moreover, the elevated 
mutational burden resulting from DNA damage can gen-
erate a greater number of neoantigens, thereby enhanc-
ing the efficacy of immunotherapy [31]. Conversely, the 
accumulation and incomplete repair of DNA damage 
might also facilitate immune escape, potentially compro-
mising the success of immunotherapy. Therefore, under-
standing the complex relationship between DNA damage 
and the immune system will aid in the creation of novel 
immunotherapy approaches, improve treatment effec-
tiveness, and reduce side effects associated with therapy.

The diverse array of natural resources in China includes 
many compounds with antitumor potential. These sub-
stances are gaining prominence due to their selective 
cytotoxicity, which affects cancerous cells while spar-
ing normal cellular functions. As a result, they are being 
explored as effective chemotherapeutic agents to curb 
tumor onset and advancement. With their lower toxic-
ity levels compared to conventional treatments, natural 
products are emerging as viable candidates for both pre-
venting and treating tumors, thereby attracting increas-
ing focus within the scientific community [32–35]. The 
field of natural product studies has identified several 
compounds that possess the capacity to facilitate or 
engage in DDR [2, 36, 37]. Natural compounds can be 
classified primarily according to their chemical structures 
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into various categories, such as terpenoids, carotenoids 
(like α-carotene and β-carotene), and phenolic deriva-
tives. Phenolic derivatives consist of multiple subcatego-
ries, including phenolic acids, flavonoids, stilbenes (such 
as resveratrol), coumarins, and tannins. In addition, these 
compounds also encompass alkaloids and other nitro-
gen-containing substances, organosulfur compounds 
like isothiocyanates and indoles, as well as allyl sulfides. 
Flavonoids are subdivided into several types, such as 
chalcones (Isoliquiritigenin), lignans, flavonols (e.g., 
quercetin and kaempferol), flavanols (e.g., epigallocat-
echin), isoflavones, and anthocyanins [38]. Quercetin and 
lignans, which belong to the group of flavonoids, demon-
strate remarkable antioxidant, anti-inflammatory, anti-
cancer, and cardioprotective effects [39–41]. Quercetin 
helps prevent heart disease and cancer through its abil-
ity to neutralize free radicals and inhibit inflammatory 
responses [42, 43]. The distinguishing feature of lignans 
lies in their remarkable anti-inflammatory and neuro-
protective properties [44, 45]. Berberine, a notable alka-
loid, possesses antibacterial, blood glucose-lowering, and 
lipid-modulating activities. These characteristics have 
facilitated its broad use in managing infectious diseases, 
diabetes, and cardiovascular disorders [46]. Cantharidin 
possess strong anti-important effects and play a common 
role in cancer treatment regimens. On the other hand, 
apigenin is known for its antioxidant, anti-inflammatory, 
and anticancer attributes, which enhance its effectiveness 
in combating tumors and inflammation [47–49]. These 
naturally derived compounds are essential in preventing 
and treating various conditions, including cancer, inflam-
mation, infections, and metabolic disorders, owing to 
their wide-ranging pharmacological effects. Numerous 
studies have demonstrated that specific natural prod-
ucts facilitate repair by interacting with key enzymes in 
the pathway [50]. A diverse array of natural products has 
been discovered to exert a substantial influence in the 
management of various ailments [51–53]. The present 
review will focus on the modulation of key enzymes in 
the DDR mechanism by various natural bioactive com-
pounds and their implications in disease development.

Natural compounds influence critical enzymes 
associated with BER‑induced disease development
Bioactive compounds from natural origins can influence 
DDR by targeting essential enzymes in BER pathway. 
This pathway includes critical enzymes such as 8-oxog-
uanine DNA glycosylase 1 (OGG1), AP endonuclease 1 
(APE1), DNA polymerase, DNA ligase, and nucleic acid 
endonuclease (NEIL1). These enzymes play pivotal roles 
in repairing DNA damage through the BER process [1]. 
Repair process-associated genetic defects give rise to 

malignancies, inflammatory conditions, senescence, and 
neurodegenerative disorders [54–56].

NEIL1 modulates glycolipid metabolism via mecha-
nisms that are influenced by cellular redox status and 
mitochondrial function. Downregulation of this DNA 
repair enzyme is associated with increased genomic 
instability, impaired mitochondrial energy production, 
elevated circulating phospholipid and triglyceride levels, 
heightened liver inflammatory responses, and excessive 
insulin secretion [57]. The administration of berberine 
enhances insulin secretion, ameliorates insulin resistance, 
suppresses adipogenesis, mitigates adipose tissue fibrosis, 
alleviates hepatic steatosis and improves intestinal dysbi-
osis [58, 59]. Berberine shows considerable promise as a 
therapeutic agent for effectively managing metabolic dis-
orders [60–62]. Further investigation, especially through 
clinical trials, is required to clarify its molecular mecha-
nisms and targets.

NEIL1 coordinates glycolipid metabolic regula-
tion through pathways influenced by oxidative stress 
responses and mitochondrial functional capacity. Repres-
sion of this glycosylase is associated with increased 
DNA damage accumulation, impaired mitochondrial 
bioenergetics, elevated serum lipid profiles (including 
phospholipids and triglycerides), hepatic inflammation, 
and disrupted insulin regulation [63]. The BER process 
induces genomic stress by elevating Endonuclease III-like 
protein 1 (NTH-1) levels, thereby promoting age-related 
neurodegeneration in the Hidradenitis elegans Parkin-
son’s disease (PD) model [64]. Multiple bioactive con-
stituents in traditional Chinese medicine (TCM) exhibit 
neuroprotective effects, potentially mediated through 
regulatory influences on the BER mechanism. Notably, 
certain qi-tonifying botanicals may enhance mitochon-
drial function and alleviate genomic instability, mirror-
ing the protective outcomes observed under NTH-1 
pathway inhibition. Moreover, the Poly pharmacological 
nature of TCM preparations, which simultaneously inter-
act with multiple molecular targets, aligns well with the 
complex network of cellular signaling cascades examined 
in this study. This suggests that exploring the effects of 
TCM on the BER pathway and associated signaling path-
ways may elucidate potential mechanisms for PD treat-
ment. Such research could provide valuable insights for 
the development of novel TCM-based drugs or therapies 
for PD, thereby advancing the role of TCM in neurode-
generative disease treatment. Berberine, an isoquinoline 
alkaloid obtained from traditional Chinese medicinal 
plants, shows promise as a treatment for neurodegen-
erative disorders. This potential is attributed to its abil-
ity to inhibit critical enzymes involved in these diseases, 
reduce intracellular oxidative stress and neuroinflam-
mation, stimulate autophagy, and protect neurons from 
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damage [65]. Moreover, studies in the literature have 
shown that natural compounds like ginsenoside, epigal-
locatechin gallate, soy isoflavones, curcumin, resveratrol, 
tanshinone, ligustilide, ginkgo biloba extract, and baica-
lein possess neuroprotective properties. These findings 
open avenues for new therapeutic approaches and offer 
significant insights into the creation of innovative drugs 
and methods for addressing neurodegenerative disorders 
[66]. NEIL3 acts as a DNA glycosylase in BER pathway 
and plays an essential role in effective DDR, particularly 
in cells that divide rapidly. Reduced expression of NEIL3 
leads to neurological abnormalities characterized by two 
main pathological features: a decrease in the number of 
microglia in the striatum and an exaggerated response 
from neuronal progenitors during hypoxia–ischemia rep-
erfusion events [67].

The induction of colorectal carcinoma by 1,2-dimeth-
ylhydrazine was attenuated by quercetin through the 
upregulation of key BER enzymes, including OGG1, 
APE1, and XRCC1. This enhancement in enzyme levels 
promoted more efficient DDR, resulting in a significant 
reduction in the formation of 8-oxo-dG [42]. XRCC1, a 
scaffolding protein that plays a crucial role in the BER 
pathway, in combination with etoposide and resvera-
trol, presents a promising therapeutic strategy for non-
small cell lung cancer (NSCLC). This enhanced efficacy 
is attributed to resveratrol’s ability to increase the che-
mosensitivity of etoposide by downregulating XRCC1 
expression [68]. Berberine downregulates the expression 
of XRCC1, thereby disrupting the XRCC1-mediated BER 
pathway. This disruption not only compromises cellu-
lar DNA repair mechanisms but also enhances the sen-
sitivity of triple-negative breast cancer (TNBC) cells to 
chemotherapeutic agents, potentially improving their 
responsiveness to treatment [69]. The mechanism by 

which berberine exerts its effects in the treatment of 
breast cancer (Fig. 1). Thujaplicins suppress the function 
of DNA polymerase β and λ within the X family, conse-
quently impacting both BER and NHEJ pathways. This 
suppression increases the sensitivity of various cancer 
cells to bleomycin and temozolomide [70]. The appli-
cation of lignocaine in lung squamous carcinoma cells 
resulted in an elevation of OGG1 levels [71].

The role of natural products in neuroendocrine 
regulation and their potential applications 
in cancer and metabolic disorders
The NER process encompasses two distinct pathways: 
global genome repair (GGR) and transcription-cou-
pled repair (TCR) [72–74]. The body undergoes TCR to 
address transcription-blocking DNA lesions (TBL) in 
genomic DNA [75]. The initiation of TBL induces tran-
scriptional stress, disrupting the normal regulation of 
gene expression and leading to severe consequences such 
as carcinogenesis, accelerated aging, and neurodegen-
erative disorders [76, 77]. The key enzymes involved in 
the TCR pathway include Cockayne syndrome protein 
B (CSB), CSA, UVSSA, RNA polymerase II, and other 
essential components [78]. The GGR mechanism oper-
ates genome-wide, repairing NER-related damage at any 
genomic location and throughout all stages of the cell 
cycle [79]. GGR primarily involves two key complexes: 
CRL4-DDB2 and Xeroderma pigmentosum comple-
mentation group C (XPC). The process is initiated by 
the assembly of the TFIIH complex, together with XPA, 
Replication protein A (RPA), and the endonucleases XPG 
and ERCC1-XPF [80].

Excision repair cross-complementation group 
1  (ERCC1) plays a crucial role in regulating pancre-
atic β-cell activity and insulin responsiveness, and its 

Fig. 1  Mechanisms through which berberine treats breast cancer involve modulation of the XRCC1 enzyme in BER. Berberine can activate 
a cascade of transcription factors via AMPK signaling pathway, leading to upregulation of XRCC1 gene expression. Additionally, it facilitates the role 
of XRCC1 in the repair process by means of NF-κB signaling pathway. Furthermore, it indirectly enhances XRCC1 activity by mitigating oxidative 
stress-induced DNA damage
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association with the onset of diabetes and its related 
complications has been well established. In a mouse 
model with adipose tissue-specific ERCC1 knockout, ele-
vated DNA damage levels triggered a significant increase 
in inflammatory cytokines, such as interleukin-6 and 
tumor necrosis factor, within the adipose tissue. Conse-
quently, this inflammatory response contributed to the 
development of impaired glucose tolerance in the mice 
[81]. From the perspective of TCM, numerous Chinese 
herbs possess anti-inflammatory and metabolism-reg-
ulating properties. For instance, astragalus and lycium 
barbarum may enhance the regulation of fat metabo-
lism by modulating DDR mechanisms or inflammatory 
pathways. Future studies should investigate the effects of 
TCM on these metabolic pathways, which may pave the 
way for developing novel therapeutic strategies for dis-
orders associated with fat metabolism. While there is no 
direct evidence linking natural products that can target 
ERCC1 for diabetes treatment, certain natural products 
have demonstrated potential in this area. For example, 
polysaccharides extracted from mulberry leaves dem-
onstrate a range of bioactive properties, such as lipid-
lowering, blood glucose reduction, antioxidant, and 
anti-inflammatory effects. They are also capable of pro-
tecting pancreatic islet cells, alleviating insulin resistance 
and regulating intestinal flora [82]. However, the phar-
macological mechanism of mulberry leaf polysaccharides 
in diabetes treatment remains incompletely elucidated. 
Curcumin, a bioactive compound derived from turmeric, 
demonstrates a wide range of physiological and phar-
macological benefits. These include potent antioxidant 
and anti-inflammatory properties, as well as anticancer, 
neuroprotective, and antidiabetic effects, highlighting 
its potential for diverse therapeutic applications [83, 84]. 
A substantial body of research has consistently demon-
strated curcumin’s efficacy in both the prevention and 
management of diabetes [85]. The naturally derived com-
pound Rhizoma Coptidis has shown significant potential 
in addressing a variety of conditions, including tumors, 
metabolic disorders, and inflammatory diseases. Its ther-
apeutic properties suggest it could play a crucial role in 
overcoming diverse health challenges, offering a prom-
ising avenue for advancements in medical research and 
treatment [86, 87]. Despite the therapeutic potential of 
these natural products, their specific pharmacological 
mechanisms of action remain elusive and necessitate fur-
ther investigation by researchers.

A subset of individuals diagnosed with XP may pro-
gress to develop a severe and debilitating neurodegen-
erative condition known as XP neurological disease [88, 
89]. This condition progressively affects the nervous sys-
tem, leading to substantial neurological deterioration and 
significantly diminishing the quality of life for affected 

individuals. Mutations in the XPA, XPD, and XPG genes 
are identified as primary contributors to neurological 
impairment in XP patients. These genetic alterations 
are strongly associated with severe neurological deficits. 
Conversely, mutations in the XPC, XPE, and XPV genes 
generally do not exhibit a direct association with neuro-
logical abnormalities, suggesting that these genes play a 
lesser role in the progression of neurological issues in XP 
patients [90]. The application of polyphenols as a multi-
targeted therapeutic strategy presents a promising and 
practical approach for addressing neurodegenerative dis-
orders, which are often difficult to manage with conven-
tional treatments like glutathione supplementation and 
cholinesterase inhibitors. By simultaneously influencing 
multiple pathways, polyphenols may offer a more com-
prehensive therapeutic approach that addresses the mul-
tifaceted nature of these diseases, potentially enhancing 
patient outcomes in ways that conventional drugs can-
not achieve. This innovative strategy holds considerable 
promise for improving the efficacy of treatments target-
ing neurodegenerative diseases [91]. Magnoflorine exhib-
its considerable potential as a promising therapeutic 
candidate for addressing neurological disorders, particu-
larly Alzheimer’s disease (AD). Its distinctive pharmaco-
logical properties indicate that it may play a pivotal role 
in the management of these conditions, providing a novel 
therapeutic avenue and potentially enhancing outcomes 
for affected individuals [92, 93]. The potential of cur-
cumin in the treatment of neurodegenerative diseases, 
including AD and PD, has been demonstrated [84, 94, 
95].

Capsaicin has shown significant potential in enhancing 
the cytotoxic impact of erlotinib and effectively inhibiting 
cell proliferation in NSCLC cells. When used in combi-
nation, this therapy leads to a notable decrease in ERCC1 
expression and a strong suppression of the AKT signal-
ing pathway in both A549 and H1975 cell lines. These 
results indicate that capsaicin could be vital in increasing 
NSCLC cells’ sensitivity to erlotinib, thereby potentially 
improving the effectiveness of erlotinib in treating this 
aggressive type of cancer [96]. The therapeutic effects of 
capsaicin on NSCLC are mediated through its modula-
tion of the ERCC1 enzyme, a key component of the NER 
pathway. By influencing this critical enzyme, capsai-
cin significantly alters cellular repair processes, thereby 
enhancing its efficacy in combating the disease (Fig.  2). 
Retigeric acid B enhances the efficacy of cisplatin in hor-
mone-resistant prostate cancer cells by modulating the 
NER pathway. Specifically, it targets key proteins includ-
ing ERCC1, TFB5, and RPA1, thereby potentiating the 
therapeutic effect of cisplatin. Additionally, Retigeric acid 
B may influence the MMR system by potentially interact-
ing with the DNA Mismatch Repair Protein 2 (MSH2) 
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and MSH6 proteins, which could contribute to enhanced 
therapeutic outcomes [97]. The concurrent application of 
Tretinoin and oxaliplatin in pancreatic cancer cell lines 
demonstrates a synergistic effect by downregulating key 
enzymes involved in the NER process. Specifically, this 
downregulation affects critical enzymes such as XPA, 
XPB, XPC, ERCC1, XPD, and XPF, which are essential 
for DNA repair mechanisms. However, in contrast to 
breast cancer cells where an elevation in γH2AX levels is 
observed along with the presence of DNA DSBs [98].

Genetic mutations in NER-associated genes can lead 
to various inherited disorders, such as XP, CS, and 
photosensitive trichothiodystrophy (TTD) [99–101]. 
XP, an exceptionally rare autosomal recessive disor-
der, is characterized by an extreme and often debilitat-
ing photosensitivity of the skin to ultraviolet radiation, 
making even minimal sunlight exposure a significant 
health risk [102, 103]. Genetic mutations in XPA, XPB 
(ERCC3), XPC, XPD (ERCC2), XPE (DDB2), XPF 
(ERCC4), and XPG (ERCC5) are commonly found 
in individuals with XP. These defects lead to compro-
mised NER mechanisms, which are hallmark features 
of the disorder [100, 104]. The heightened vulner-
ability to DNA damage observed in XP patients stems 
from mutations in genes that play a crucial role in the 
NER pathway. This pathway is vital for repairing DNA 

lesions caused by Ultraviolet (UV) radiation [105]. The 
progression of skin cancer is a multifaceted and incre-
mental process that initiates when the cellular sys-
tems tasked with repairing UV-induced DNA damage 
become impaired or cease to function effectively. Pro-
longed exposure to UV radiation triggers the formation 
of specific DNA abnormalities, including cyclobutane 
pyrimidine dimers (CPDs) and 6–4 pyrimidine-pyrim-
idone (6-4PPs) photoproducts, which play a pivotal role 
in this cancerous transformation. If these abnormalities 
are not adequately repaired, they tend to accumulate, 
leading to genetic mutations. As time progresses, the 
buildup of such unrepaired damage can interfere with 
normal cellular functions, escalating the risk of malig-
nancy and the onset of skin cancer [106]. The presence 
of genistein in normal skin significantly reduces the 
formation of CPDs induced by UVB radiation, demon-
strating its remarkable photoprotective efficacy [107]. 
The disorders of CS and TTD have been linked to defi-
ciencies in NER, with mutations in the CS proteins spe-
cifically affecting only TCR [108]. Although patients 
with CS and TTD exhibit sensitivity to UV light, they 
do not manifest a predisposition to skin cancer. Muta-
tions in the XPG gene can give rise to both XP and CS. 
XP arises from point mutations in the XPG gene that 
impair NEIL1 activity, while CS stems from truncating 

Fig. 2  Mechanisms by which capsaicin treat NSCLC involve modulation of the ERCC1 enzyme in the NER pathway. Capsaicin effectively regulates 
ERCC1 expression through its binding to the transient receptor potential vanilloid subfamily 1 receptor, thereby initiating downstream signaling 
pathways such as MAPK and PI3K/Akt, ultimately leading to an increase in intracellular calcium ion concentration. Additionally, capsaicin 
inhibits ERCC1 expression by activating transcription factors including NF-κB and p53. Furthermore, capsaicin induces oxidative stress resulting 
in the generation of substantial amounts of free radicals and ROS, consequently causing DNA damage within cancer carcinoma
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mutations in the XPG gene that disrupt transcriptional 
activity.

The emerging role of natural products in tumor 
therapy: MMR enzymes and Lynch syndrome (LS)
The MMR contains two groups of key enzymes, namely 
the homologues of the bacterial MutLS system. The MutS 
family of enzymes comprises three key proteins: MSH2, 
MSH3, and MSH6. These proteins are essential for rec-
ognizing and binding mismatched DNA base pairs dur-
ing the DNA repair process.  On the other hand, the 
MutL family comprises four key proteins: MLH1, MLH3, 
Postmeiotic segregation increased 1 (PMS1), and PMS2. 
These proteins collectively function synergistically to 
facilitate the correction of DNA mismatches through 
interactions with MutS enzymes, thereby preserv-
ing genomic integrity and mitigating the risk of disease 
development, including malignancies [109].

LS results from heterozygous mutations in the ger-
mline of critical MMR genes, specifically MSH2, MSH6, 
MLH1, and PMS2. These genes play an essential role in 
correcting DNA replication errors, and mutations in 
these genes lead to defective repair mechanisms, thereby 
significantly increasing the risk of various cancers, par-
ticularly colorectal cancer [110]. LS can also be trig-
gered by the deletion of the 3’ end of the EPCAM gene. 
This genetic alteration disrupts the normal expression of 
MSH2, thereby contributing to the onset of LS [111]. The 
patients with tumors associated with LS encompass colo-
rectal, endometrial, ovarian, gastric, small bowel, hepatic 
and biliary tract, urinary tract, and cutaneous malignan-
cies [112]. Individuals harboring mutations in MSH6 
and PMS2 exhibit a significantly elevated risk of devel-
oping breast cancer [113]. Most cases are characterized 
by somatic mutations, with around 20% linked to LS. In 
sporadic prostate cancers, microsatellite instability (MSI) 
is mainly associated with loss-of-function alterations 
in the MSH2 and MSH6 genes. These genes play a vital 
role in MMR pathway. Mutations in these genes com-
promise the ability to correct DNA replication errors, 
leading to an increased accumulation of MSI. On the 
other hand, the occurrence of MSI in colon and endo-
metrial cancers is predominantly attributed to the epi-
genetic silencing of the MLH1 gene, primarily via DNA 
methylation. This silencing impairs the normal function 
of MLH1 within the MMR pathway, leading to genomic 
instability and facilitating tumorigenesis in these tissues 
[114]. Although the role of MSH6 in various tumors is 
under investigation, there is currently no widely recog-
nized specific natural product that directly targets MSH6 
for tumor treatment. Elemene, an effective sesquiterpene 
component extracted from Zingiberaceae, exhibits signif-
icant therapeutic effects on lung, breast, and pancreatic 

cancers by inducing apoptosis of tumor cells through 
inhibition of their DNA synthesis [115, 116]. Currently, 
numerous natural compounds, including curcumin, res-
veratrol, and soy isoflavones, are being investigated for 
their potential effects on tumor development, attributed 
to their anti-inflammatory properties [117–119]. The 
possibility of modulation of MSH6 expression is also 
being considered. The natural compounds mentioned 
here offer potential avenues for the treatment of LS-asso-
ciated cancers by modulating cellular signaling pathways, 
influencing gene expression and repair mechanisms, 
among other mechanisms. The mechanism of LS is intri-
cate and involves a multitude of genes and signaling path-
ways. Future studies should not only explore further into 
the functions of MSH6 and its associated genes but also 
assess the potential of natural products in treating LS-
related cancers, particularly their impact on tumor cell 
DNA repair mechanisms. The studies will offer a more 
robust theoretical foundation and practical guidance 
for the implementation of precision medicine in cancer 
therapy.

Enhancing understanding of NHEJ‑related 
enzymes: their therapeutic potential in metabolic 
and neurodegenerative disorders
The key enzymes involved in NHEJ include Ku70/80 pro-
teins, DNA-PKcs, LIG4, XRCC4, and other factors [17, 
120, 121].

DNA-PK is a crucial participant in NHEJ and has 
also been implicated in various components of DDR 
[122–124], which plays a vital role in the transcriptional 
regulation of adipogenesis [125]. DNA damage acti-
vates DNA-PK, leading to disrupted energy metabolism 
in skeletal muscle. This metabolic disruption ultimately 
contributes to increased insulin resistance, thereby exac-
erbating metabolic dysfunction. In contrast, reduced 
DNA-PK activity has been shown to promote improved 
glucolipid metabolism. Mice subjected to a high-fat diet 
with diminished DNA-PK activity exhibit enhanced glu-
cose tolerance and insulin sensitivity. Furthermore, these 
mice show a lower incidence of obesity and hyperglyce-
mia, indicating a beneficial metabolic adaptation [126]. 
Targeting the inhibition of DNA-PK shows significant 
potential as a highly effective therapeutic strategy for 
combating obesity and managing type 2 diabetes. Modu-
lating DNA-PK activity could provide novel approaches 
to enhance metabolic function and insulin sensitiv-
ity, thereby potentially slowing the progression of these 
chronic conditions [127].

Amyotrophic Lateral Sclerosis (ALS) is a severe neuro-
logical condition marked by the gradual deterioration of 
motor neurons, which include both those in the cerebral 
cortex and those in the spinal cord. This degenerative 
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process affects both upper and lower motor neurons, 
leading to a debilitating disorder. This neurodegenera-
tive process disrupts neural signaling pathways, leading 
to widespread muscular denervation and subsequent 
muscle atrophy. The disease is characterized by a pro-
gressive loss of voluntary motor control, culminating in 
severe physical disability as the neuromuscular system 
experiences irreversible degeneration [128]. The occur-
rence and advancement of ALS are linked to deficiencies 
in NHEJ [129]. AD is a progressive neurodegenerative 
disorder marked by the gradual decline in brain func-
tion, with significant impacts on cognitive abilities and 
memory processes. This neurodegenerative disorder 
predominantly affects the cerebral cortex and hippocam-
pal regions, resulting in the accumulation of abnormal 
protein deposits and the subsequent disruption of syn-
aptic connections between neurons. These pathological 
changes lead to substantial impairment of higher cortical 
functions, ultimately causing severe disability in affected 
individuals [130]. The pathological manifestations of AD 
primarily involve localized neuronal death, as well as 
the accumulation of neurogenic fiber tangles and senile 
plaques, which are known as neuronal and extracellular 
lesions, respectively. Several studies have suggested a 
potential correlation between AD development and defi-
ciencies in NHEJ, although further research is required to 
validate this association [131].

Research investigations into redox-induced nucleic 
acid alterations within cerebral tissues following ischemic 
events have primarily focused on assessing the vulner-
ability of neural populations. This scientific inquiry 
highlights the molecular mechanisms responsible for 
free radical-mediated genomic instability in diverse cel-
lular components of the central nervous system under 
hypoxic-ischemic conditions. Following cerebrovascu-
lar occlusion, there is a significant surge in reactive oxy-
gen species (ROS) production, which induces molecular 
alterations within neural tissues, impacting both cortical 
regions and myelinated pathways. Genomic instability 
manifests rapidly post-occlusion, and while molecular 
repair mechanisms may mitigate these changes, their 
efficacy is time dependent. This cascade of biochemi-
cal events contributes to tissue damage across multiple 
CNS compartments, with the severity and reversibility 
of nucleic acid modifications varying over time [132]. 
Therefore, the concern regarding oxidative DNA damage 
and repair has emerged as a significant focus in stroke 
research. Apigenin has been documented in scientific lit-
erature for its potential therapeutic effects on ischemic 
stroke by downregulating the expression of the pivotal 
enzyme Ku70 involved in NHEJ [133] (Fig. 3).

Genistein exerts its inhibitory effects on HRR and 
NHEJ pathways in glioblastoma and sarcoma cells 

following carbon ion radiation by preventing the phos-
phorylation of key proteins Ku80 and DNA-PKcs, and 
by slowing down the assembly of RAD51 foci [134, 135]. 
The concurrent administration of genistein and AG1024 
demonstrates a synergistic effect in enhancing radio sen-
sitivity in prostate cancer cells. This synergy is primarily 
due to the collective downregulation of crucial proteins 
involved in DNA repair processes. More specifically, this 
treatment combination effectively suppresses the expres-
sion of RAD51, which plays a vital role in HRR, and 
Ku70, an indispensable factor in NHEJ. By targeting these 
key repair mechanisms, genistein and AG1024 together 
markedly compromise the cells’ ability to respond to 
DNA damage from radiation, thus increasing their sus-
ceptibility to radiation therapy and potentially leading to 
better therapeutic outcomes [136]. The combination of 
ellagic acid and bevacizumab for anti-angiogenic ther-
apy (also impacting DNA repair by reducing ERCC1 and 
XRCC1 expression) enhances tumor radiosensitivity 
[137, 138]. The elevation in ROS induced by β-carotene, 
coupled with the subsequent activation of caspase-3, may 
lead to a reduction in Ku protein levels in gastric can-
cer cells. This decrease in Ku proteins, which are critical 
for maintaining genomic stability, could impair the cell’s 
ability to efficiently repair DNA damage. Consequently, 
the accumulation of cellular injuries can trigger apop-
tosis mechanisms, leading to programmed self-destruc-
tion of these malignant cells. The interplay between 
increased ROS levels and caspase-3 activation, triggered 
by β-carotene, offers a plausible explanation for how this 
compound may increase the sensitivity of gastric cancer 
cells to apoptosis [139].

The role of RAD51 and its associated enzymes 
in HRR and their potential targets in cancer therapy
The RAD51 family of proteins is represented in every 
organism and is a key enzyme in HRR [140]. The other 
key enzymes involved in HRR include BRCA1, BRCA2, 
and PALB2, which are known to play crucial roles in both 
developmental abnormalities and oncogenesis [141].

PARP1 is a multifaceted protein that plays an essen-
tial role in detecting DNA strand breaks and coordinat-
ing their repair. Beyond its well-established functions 
in repairing DSBs and replication fork damage, PARP1 
significantly contributes to maintaining cellular homeo-
stasis by regulating metabolic processes. It influences 
mitochondrial function, which is critical for energy pro-
duction, and modulates oxidative metabolism, thereby 
affecting cellular stress responses. In addition to its role 
in DNA repair, PARP1 also plays a significant part in 
aging-related diseases by regulating metabolism and 
managing oxidative stress, both of which are essential 
for maintaining cellular integrity and function over time. 
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This extensive range of activities positions PARP1 as a 
key factor in genomic stability and age-associated health 
conditions [16]. Mice overexpressing PARP1 exhibit obe-
sity and reduced glucose tolerance, making them a valu-
able mammalian model for studying inflammation [142]. 
From the perspective of TCM, certain Chinese herbs 
may modulate PARP-1-related pathways. For instance, 
ginseng and astragalus, known for their anti-inflamma-
tory features, could potentially improve the metabolic 
and inflammatory conditions in hPARP-1 mice. Future 
research could explore their regulatory mechanisms on 
PARP-1, which may provide fresh perspectives on man-
aging related conditions.

Genetic alterations in genes that play a crucial role 
in HRR are often linked to the development of estro-
gen-dependent cancers, including breast cancer [143]. 
Berberine has been shown to enhance the radiosensi-
tivity of human breast cancer cells via a multifactorial 
mechanism. Furthermore, berberine downregulates 

the expression of RAD51, a critical protein in the HRR 
pathway that is essential for repairing DNA DSBs. By 
down-regulating RAD51, berberine compromises the 
cells’ capacity to effectively repair radiation-induced 
DNA damage, thereby enhancing their vulnerability to 
the detrimental effects of radiation therapy and poten-
tially improving therapeutic outcomes [144]. The con-
current administration of berberine and PARP inhibitors 
resulted in a synergistic effect, inducing apoptosis and 
markedly suppressing tumor progression. Moreover, 
this study demonstrated that the combined treatment 
exerted a significant impact on ovarian cancer cells by 
inducing elevated levels of oxidative stress and DNA 
damage, ultimately enhancing their sensitivity to PARP 
inhibition [145]. The radiosensitivity conferred by 
RAD51 on esophageal carcinoma is effectively down-
regulated by berberine [146]. Elevated expression of 
BRCA1 and reduced mammary carcinogenesis induced 
by 7,12-dimethylbenz[a]anthracene were observed in 

Fig. 3  Apigenin holds promise in the treatment of ischemic stroke by modulating RAD51 and BRCA1 during HRR as well as Ku70/80 in NHEJ. 
It activates the p53 pathway, which may elevate the transcriptional activity of BRCA1, thereby indirectly regulating the expression of RAD51 
and enhancing DNA repair processes. Additionally, apigenin upregulates the expression of Ku70/80 via the p53 pathway, further promoting 
DNA repair. It potentially inhibits cancer cell proliferation by suppressing the PI3K/Akt signaling pathway and decreasing cellular reliance 
on growth signals, thereby modulating the expression of BRCA1 and RAD51. Additionally, it exhibits anti-inflammatory properties, likely 
through the inhibition of NF-κB activity and the reduction of DNA damage induced by inflammation, thus safeguarding the functions of BRCA1, 
RAD51, and Ku70/80 and enhancing DNA repair mechanisms. It may modulate the expression and repair functions of BRCA1, RAD51, and Ku70/80 
through the regulation of the ERK/MAPK signaling pathway. Additionally, it activates the AMPK pathway, thereby enhancing the expression 
of Ku70/80 and associated proteins, which contributes to increased DNA repair. Furthermore, it indirectly facilitates Ku70 expression by eliminating 
oxygen free radicals and mitigating oxidative DNA damage
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rats treated with genistein [147]. The expression of key 
enzymes, such as RAD50 and RAD51, is downregulated 
by cantharidin, leading to a sensitizing effect on pan-
creatic cancer cells [148]. The administration of cantha-
ridin resulted in a significant reduction in the expression 
level of BRCA1 in NCI-H460 human lung carcinoma 
[149] (Fig. 4). Isoorientin suppressed HRR in hepatocel-
lular carcinoma (HCC) cells while sparing normal cells, 
which is linked to reduced activation of ATM and inhi-
bition of phosphorylated pATM binding to the MRE11-
RAD50-NBS1 complex [150]. The mechanisms through 
which isoorientin exert its therapeutic effects on HCC by 
modulating ATM within HRR (Fig. 5). In traditional can-
cer treatments, a widely used approach to eliminate can-
cer cells involves blocking DDR pathways. Ferulic acid 
improves the effectiveness of PARP inhibitors in breast 
cancer therapy by reducing the formation of RAD51 
foci, which is essential for HRR. Furthermore, it extends 
the period that DSBs stay unrepaired. The accumula-
tion of these unrepaired DSBs over time increases can-
cer cell sensitivity to PARP inhibition, thereby enhancing 
the therapeutic efficacy of the treatment. By disrupt-
ing DNA repair mechanisms, ferulic acid compromises 
the cellular ability to maintain genomic integrity, thus 
increasing cellular vulnerability to the effects induced by 
PARP inhibitors [151]. The inhibition of HRR is achieved 
by β-thujaplicin through downregulation of the key 
enzyme RAD51, thereby enhancing the susceptibility of 

osteosarcoma cells to ionizing radiation-induced damage 
[152]. Tretinoin reduces the protein expression of PARP1, 
XRCC1, and RAD51 in TNBC cells, consequently impair-
ing the SSBR, BER and HRR pathways [153].

Enhancing DNA damage tolerance and targeting 
TLS polymerases in cancer therapy
A hallmark feature of the DDR network is its ability to 
detect and rectify DNA damage, as well as structural 
challenges that occur during DNA replication. This 
critical function, referred to as DNA damage tolerance 
(DDT), allows the cell to preserve genomic stability in 
the face of such damage. DDT enables cells to continue 
DNA synthesis even when confronted with lesions or 
obstacles in the DNA template, ensuring that replica-
tion can proceed uninterrupted, and the integrity of the 
genome is maintained. This adaptive response is essen-
tial for cell survival, especially in scenarios where DNA 
repair mechanisms may be temporarily overwhelmed or 
unable to fully resolve the damage [154]. TLS is one of 
the modes utilized of DDT [155]. The synthesis of TLS 
necessitates the utilization of designated DNA polymer-
ases [156, 157]. The majority of these polymerases are 
classified as members of the Y-family [158]. The com-
mon polymerases found in E. coli cells are polymerase IV 
and polymerase V [159] as well as Pols η, ι, κ, and Rev1 
[160, 161] in the mammalian cells. The B-family DNA 
polymerase ζ plays an indispensable role in eukaryotic 

Fig. 4  Cantharisin exhibits therapeutic potential against pancreatic and lung cancers by modulating RAD51 and BRCA1 in HRR pathway. By 
inhibiting the Nrf2 pathway, Cantharisin decreases the expression of RAD51, thereby increasing DNA damage in cancer cells. Additionally, it 
modulates the expression of RAD51 and BRCA1 via the activation of the p53 signaling pathway, which enhances DNA repair mechanisms and cell 
cycle checkpoints. It downregulates the expression of RAD51, thereby reducing the capacity of cancer cells to repair DNA by inhibiting the PI3K/
Akt and ERK/MAPK signaling pathways. Additionally, it indirectly upregulates BRCA1 expression, thereby enhancing DNA repair mechanisms 
through the inhibition of the PI3K/Akt and NF-κB pathways. This compound contributes to the heightened reliance of cancer cells on DNA damage 
response by augmenting oxidative stress, which subsequently impairs the repair functions of RAD51 and BRCA1, leading to increased cellular 
apoptosis
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TLS, underscoring its critical importance in this process 
[3, 162, 163]. The presence of genetic defects associated 
with DDT has been correlated with the development of 
various disorders, characterized by symptoms such as 
increased susceptibility to cancer, neurological impair-
ments, abnormalities in stem cell function, and prema-
ture aging [154].

Research has demonstrated that diverse TLS enzymes 
significantly contribute to the development of platinum-
based drug resistance in cancer cells. Polymerase η plays 
a important role in error-free trans-damage synthesis 
through various cisplatin adducts [164]. The application 
of interstrand crosslink inducers in cancer therapy leads 
to a significant upregulation of Pol η expression in ex vivo 
conditions [165]. The down-regulation of Rev1 expression 
in ovarian cancer cells also leads to a decrease in cispl-
atin-induced mutagenesis and drug resistance [166, 167]. 
Genetic ablation of Rev enzymes in B-cell malignancy 
experimental systems markedly reduced tumor tolerance 
to platinum agents, as demonstrated by enhanced cyto-
toxic responses in both cellular assays and animal models 
[168]. Demonstrated a significant prognostic association 
with reduced overall survival rates in patients diagnosed 
with NSCLC following cisplatin or carboplatin therapies 

[169]. Dual suppression of both Pol η and ATR enhances 
cisplatin’s cytotoxicity in refractory NSCLC by compro-
mising DNA damage response pathways [170]. The larger 
active site of individual TLS DNA polymerases makes 
them attractive targets for anticancer therapy, as they can 
be specifically targeted unlike replicative polymerases. 
Screening for inhibitors of Pol κ, a TLS polymerase, has 
identified promising lead compounds that require fur-
ther development [171]. In the realm of natural products, 
a multitude of compounds derived from nature offer 
innovative approaches for cancer therapy. For instance, 
paclitaxel, a compound extracted from the bark of the 
Pacific yew tree (Taxus brevifolia), promotes microtubule 
polymerization, inhibits their depolymerization, and dis-
rupts the mitotic process in cancer cells. This compound 
has demonstrated efficacy in treating various cancers, 
including ovarian, breast, and lung cancer, thereby play-
ing a pivotal role in oncological treatments [172]. Campt-
othecin, an alkaloid extracted from the Chinese dove tree 
(Camptotheca acuminata), functions primarily to inhibit 
topoisomerase I, thereby disrupting normal DNA repli-
cation and transcription processes, ultimately leading to 
apoptosis in cancer cells. Derivatives such as irinotecan 
and topotecan, developed based on camptothecin, have 

Fig. 5  Retigeric acid B effectively treats prostate cancer by modulating the MSH2 and MSH6 enzymes involved in MMR. β-carotene exhibits 
therapeutic potential for gastric cancer by modulating Ku70 and Ku80 proteins in NHEJ. Isoorientin demonstrates efficacy against HCC by regulating 
ATM protein in HRR. Both retigeric acid B and β-carotene regulate the expression of relevant proteins through activation of transcription factors 
NF-κB and p53, respectively. ATM initiates the repair response by phosphorylating multiple target proteins including p53, BRCA1, and RAD51. On 
the other hand, Isoorientin inhibits the repair response by modulating ATM signaling pathway and reducing phosphorylation levels of ATM kinase, 
thereby impeding HCC intracellular DNA repair to achieve a therapeutic effect
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been extensively utilized in clinical settings, offering sig-
nificant therapeutic benefits for patients with colorectal 
and small cell lung cancers [173]. Curcumin, the principal 
bioactive compound in turmeric, exhibits anti-inflamma-
tory, antioxidant, and anticancer traits. It modulates cell 
signaling pathways and induces apoptosis, thereby influ-
encing the biological behavior of cancer cells. Research 
has demonstrated that curcumin may regulate the DDR 
signaling pathway, thereby enhancing the sensitivity of 
cancer cells to cisplatin and reversing cisplatin resistance 
[174]. Further investigation into DDT’s potential is essen-
tial to develop effective anticancer strategies and uncover 
tumor-specific vulnerabilities, thereby optimizing 

therapeutic outcomes. In the future, personalized can-
cer drugs targeting specific vulnerabilities in tumors will 
be achieved through the utilization of abundant natural 
products. Finally, a table was utilized to summarize the 
regulation of key enzymes involved in DDR mechanisms 
and their associated diseases (Table 1).

Discussion
The present study provides a comprehensive review on 
the role of natural active ingredients with diverse struc-
tural characteristics in modulating the activity or expres-
sion of pivotal enzymes and investigates their correlation 
with disease development. By investigating the regulatory 

Table 1  The role of natural products in the mechanisms of DDR and their associated diseases

Category 
of natural 
product

Name of natural product DDR mechanism Regulates the activity of key 
enzymes

Related diseases References

Flavonoid Quercetin BER Promoting OGG1 Colorectal cancer [42, 175]

Luteolin BER Promoting OGG1 Squamous cell carcinoma 
of the lungs

[71]

Quercetin HRR Promoting RAD51 Oncological disease [176]

Genistein HRR, NHEJ Inhibition RAD51, Ku70 Prostate cancer [134]

Genistein HRR Promoting BRCA1 Breast cancer [147]

Apigenin HRR Promoting BRCA1, RAD51 Ischemic stroke [177]

Apigenin NHEJ Inhibition Ku70 Ischemic stroke [177]

Quercetin NHEJ Regulate Ku70/80, DNA-PKcs NSCLC [178]

Quercetin NHEJ, HRR Regulate DNA-PK, ATM Leukemia [179]

Lactone Triptolide BER, NER Regulate ERCC1, PARP1 et al Osteosarcoma [180]

Triptolide NER Regulate XPA, XPB, XPC, ERCC1, 
XPD, XPF

Pancreatic [98]

Triptolide NER Regulate PARP Advanced stage melanoma [181]

Triptolide NHEJ Regulate DNA-PKcs, Ku80 Oncological disease [182, 183]

Triptolide HRR Inhibition ATM Breast cancer [153]

Alkaloid Berberine BER Inhibition XRCC1 Triple negative breast cancer [69]

Capsaicin NER Inhibition ERCC1 NSCLC [96]

Piperine NHEJ Regulate DNA-PKcs, Ku70/80 Breast cancer [184]

Berberine HRR Inhibition RAD51 Breast cancer [144]

Berberine HRR Inhibition RAD51 Esophageal cancer [146]

Berberine HRR Inhibition RAD51 Ovarian cancer [145]

Polyphenol Resveratrol BER Promoting OGG1 and XRCC1 Diseases caused by alcoholism [185]

Resveratrol BER Inhibition XRCC1 NSCLC [186]

Resveratrol NER Possible regulation OGG1, XRCC1 XP, skin cancer [186]

Resveratrol HRR, NHEJ Inhibition ATM/ATR-P53 and Nbs1 Oncological disease [186]

Other Retigeric acid B NER, MMR Regulate ERCC1, MSH2, MSH6 Prostate cancer [187]

β-carotene NHEJ Regulate Ku70/80 Stomach cancer [139, 188, 189]

Cantharisin HRR Regulate RAD50, RAD51 Pancreatic [148]

Cantharisin HRR Regulate BRCA1 Lung cancer [149]

Isoorientin HRR Regulate ATM Liver cancer [150]

Ferulic acid HRR Inhibition RAD51 Breast cancer [151]

β-Thujaplicin HRR Inhibition RAD51 Osteosarcoma cell [152]
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impacts of these active compounds on DDR, we can bet-
ter understand their potential roles in managing diseases. 
Research indicates that natural bioactive components 
hold promise in decreasing DNA damage and improv-
ing repair efficacy through the enhancement of DNA 
repair processes. This showcases their broad applicabil-
ity in treating a variety of conditions, including cancer 
and neurodegenerative diseases. This study elucidates the 
therapeutic mechanisms by which natural bioactive com-
pounds modulate critical enzymatic components within 
DNA damage response systems, specifically DNA poly-
merases and repair-related proteins, through functional 
and expression modifications. Targeted modulation of 
these catalytic mediators shows significant potential in 
inhibiting pathological processes, particularly malignant 
proliferation and neurocognitive decline associated with 
degenerative disorders. The Poly pharmacological prop-
erties of natural bioactive agents enhance the precision 
and efficiency of repair processes. Tretinoin exemplifies a 
paradigm-shifting capacity within genomic maintenance 
frameworks, as its lactone moiety modulates enzymatic 
activities across four key DNA repair pathways: BER, 
NER, NHEJ and HRR. These interconnected regulatory 
mechanisms provide critical insights into the molecular 
drivers of oncogenesis and lay the foundation for inno-
vative therapeutic approaches in oncology. Quercetin 
exhibits a dual regulatory role in disease development. 
As a biologically active flavonoid, quercetin modulates 
DNA repair mechanisms through two distinct pathways. 
Specifically, it influences the BER system by regulating 
OGG1 and alters HRR by targeting RAD51 and BRCA1. 
These findings underscore its pathophysiological sig-
nificance in associated disorders and highlight potential 
therapeutic strategies that leverage quercetin’s activities. 
Additionally, berberine demonstrates complementary 
regulatory functions alongside its anti-suit properties. 
Berberine, an alkaloid compound, not only regulates 
XRCC1 in BER pathway but also plays a crucial role in 
NER. This dual-function mechanism suggests that ber-
berine has the potential to be developed into a new thera-
peutic approach for TNBC and NSCLC, highlighting its 
innovative significance in cancer treatment.

BER is strongly associated with a variety of diseases, 
particularly those involving SSBs. NEIL1 plays a promi-
nent role in glycolipid metabolism, and its decreased 
expression leads to DNA damage and impaired mito-
chondrial function. This impairment is closely linked 
to the development of metabolic conditions, including 
diabetes. Natural compounds, such as berberine, dem-
onstrate potential in managing metabolic disorders by 
improving insulin sensitivity and reducing liver inflam-
mation. In the context of neurological disorders, NTH-1 
upregulation has been linked to neurodegenerative 

changes observed in PD models. Natural substances such 
as berberine may provide neuroprotection by mitigating 
oxidative damage and inflammation. Defects in NER are 
associated with genetic disorders like XP and CS, result-
ing in increased sensitivity to UV light and a heightened 
risk of skin cancer. The involvement of ERCC1 in pan-
creatic β-cell function suggests that deficiencies in NER 
may also impact the development of diabetes. Natural 
compounds such as curcumin and mulberry leaf polysac-
charides exhibit certain antidiabetic properties, although 
the precise mechanism behind this effect requires further 
comprehensive investigation. In neoplastic disorders, 
deficiencies in MMR are closely linked to LS, resulting in 
an elevated susceptibility to various types of cancer. Cur-
rent research indicates that specific natural compounds 
can modulate tumor growth by regulating the activity 
of critical repair enzymes. For instance, the efficacy of 
natural products in cancer therapy is exemplified by their 
effectiveness against lung and breast cancers. Moreover, 
compounds like curcumin and resveratrol possess anti-
oxidant and anti-inflammatory properties that can indi-
rectly impact tumorigenesis. In general, modulation of 
DNA repair mechanisms through natural products holds 
promise as a therapeutic approach for metabolic, neuro-
logical, and oncological diseases. Future research should 
focus on uncovering the molecular mechanisms behind 
these compounds and carry out clinical trials to confirm 
their effectiveness.

The emerging body of research suggests significant 
associations between NHEJ and HRR in DNA DSBs and 
a range of metabolic, neurological, cardiovascular, and 
oncological disorders. Key enzymes involved in NHEJ, 
such as DNA-PKcs, Ku proteins, LIG4, and XRCC4, not 
only contribute to DDR but also participate in physiolog-
ical processes including adipogenesis, insulin sensitivity, 
and energy metabolism. It was observed that mice with 
impaired DNA-PK activity demonstrated enhanced glu-
cose tolerance on a high-fat diet, implying the potential of 
targeting DNA-PK as a therapeutic intervention for met-
abolic disorders. In the context of neurological diseases, 
aberrant NHEJ mechanisms have been closely linked to 
the onset of ALS and AD, suggesting that dysregulation 
of DNA repair pathways may play a pivotal role in neuro-
degenerative pathologies. The dysregulation in question 
may expedite the progression of diseases by facilitat-
ing oxidative damage and neuronal cell death. In terms 
of cardiovascular disease, investigations into ischemic 
stroke have demonstrated the critical role played by oxi-
dative DDR mechanisms in the pathological process. 
Relevant studies have demonstrated that the utilization 
of compounds, such as apigenin, for enhancing the func-
tionality of NHEJ and HRR may offer novel therapeutic 
strategies for ischemic stroke treatment. In cancerous 
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conditions, disruptions in NHEJ and HRR are associated 
with tumor initiation and progression. Compounds such 
as berberine and PARP inhibitors, which specifically tar-
get DNA repair pathways, have demonstrated the abil-
ity to enhance the treatment sensitivity of cancer cells. 
This evidence suggests a promising strategy for advanc-
ing oncology therapeutics. Dysregulation in DNA repair 
systems not only disrupts cellular damage response but is 
also intricately associated with the initiation and progres-
sion of various pathologies, underscoring the therapeutic 
potential of modulating these pathways. These findings 
open new avenues for innovative research and highlight 
the critical need for comprehensive studies on these 
molecular interactions to enhance therapeutic outcomes 
and disease management.

By introducing DNA lesions using cytotoxic drugs, the 
TLS pathway is triggered, playing a vital role in repairing 
genetic material. While TLS helps preserve the integrity 
of the genome by enabling continued DNA synthesis past 
damaged sites, it may also enable cancer cells to with-
stand chemotherapeutic treatments, potentially lead-
ing to treatment resistance. Experimental analyses have 
demonstrated that Y-family TLS enzymes, notably Pol η 
and Rev1, serve as crucial mediators in chemoresistance 
pathways against Pt-containing cytotoxins such as cis-
platin in malignant progression models. Pol η bypasses 
cisplatin adducts by accurately synthesizing them, ena-
bling tumor cells to survive chemotherapy-induced 
stress. Furthermore, mechanistic studies demonstrate 
that reduced Rev1 transcriptional activity correlates with 
diminished mutagenic effects of cisplatin-based treat-
ments and increased chemosensitivity in epithelial ovar-
ian carcinoma models. This suggests that the abundance 
and functionality of Y-family TLS enzymes are critical 
determinants of malignant cellular viability. Clinical data 
indicate that elevated levels of Pol η are associated with 
lower survival rates in NSCLC patients, underscoring the 
significant role of TLS in enhancing tumor resistance to 
chemotherapy. Consequently, developing inhibitors that 
specifically target TLS polymerases represent a highly 
promising strategy for cancer treatment. It is antici-
pated that the development of such targeted therapies 
will enhance tumor sensitivity to chemotherapy. Moreo-
ver, these therapeutic strategies are anticipated to pro-
vide new perspectives and methods for tailoring cancer 
treatment plans to meet the specific needs of individual 
patients. Essentially, TLS functions not only as a compo-
nent of DDR but also plays a dual role in tumor therapy, 
presenting both opportunities and challenges. Future 
investigations should concentrate on effectively targeting 
TLS polymerase to achieve a balance between inhibiting 
tumor growth and reducing chemotherapy resistance. 

Gaining a more comprehensive insight into the connec-
tion between TLS and tumor-specific vulnerabilities 
might open new avenues for the creation of innovative 
cancer treatments.

The potential of natural active ingredients in regulat-
ing DDR mechanisms offers novel avenues for disease 
prevention and treatment. Through comprehensive 
investigation into the mechanism of action of these 
compounds, we anticipate uncovering their diverse 
roles in metabolic, neurological, and oncological dis-
orders. The multi-targeted mechanism of action exhib-
ited by natural substances, particularly in the context of 
cancer treatment, may offer novel insights for develop-
ing personalized therapeutic strategies. Moreover, the 
potential of targeted therapies that specifically inhibit 
TLS polymerases to enhance chemosensitivity and 
overcome drug resistance should be further explored 
through rigorous validation in clinical trials. An in-
depth exploration of the complex relationship between 
DNA repair processes and the onset of diseases will 
provide a robust basis for the creation of innovative 
and efficient treatment approaches. In conclusion, the 
utilization of natural active ingredients in modulat-
ing DDR exhibits promising potential, and forthcom-
ing investigations will furnish us with a more profound 
comprehension, foster novel drug advancements, and 
ultimately enhance disease prevention and treatment.
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