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Abstract 

Background  Sepsis is a life-threatening infectious disease characterized by an uncontrolled inflammatory response 
and consequent multi-organ dysfunction. The kidneys, as primary excretory organs with high blood flow, are 
particularly susceptible to damage during sepsis. Nonetheless, the existing treatment options for sepsis-associated 
acute kidney injury (SA-AKI) are still restricted. Nanomedicine, especially carbon dots (CDs), has attracted considerable 
interest lately for outstanding biomedical characteristics.

Methods  To avoid the generation of toxic effects, the natural CDs derived from Ziziphi Spinosae Semen (Z-CDs) were 
synthesized employing a hydrothermal method. The free radical scavenging capabilities of Z-CDs were evaluated 
by utilizing ABTS assay, NBT method, and Fenton reaction. A lipopolysaccharide (LPS)-stimulated RAW 264.7 cell 
model was used to explore the therapeutic potential of Z-CDs on cellular oxidative stress and inflammation. The 
CuSO4-induced zebrafish inflammation model and LPS-exposed SA-AKI mouse model were employed to assess 
the therapeutic efficacy of Z-CDs in vivo.

Results  The synthesized Z-CDs exhibited distinctive unsaturated surface functional groups, which confer exceptional 
biocompatibility and the ability to scavenge free radicals. Moreover, Z-CDs were particularly effective in eliminating 
excess reactive oxygen species (ROS) in cells, thus protecting mitochondrial function from oxidative damage. 
Notably, Z-CDs have demonstrated significant therapeutic benefits in protecting kidney tissue in SA-AKI mouse 
model with minimizing side effects. In mechanism, Z-CDs effectively reduced ROS production, thereby alleviating 
inflammatory responses in macrophages through the suppression of the NF-κB pathway.

Conclusions  This study developed a multifunctional nanomedicine derived from traditional medicinal herb, 
providing a promising pathway for the advancement of innovative drug therapies to treat SA-AKI.
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Introduction
As a serious condition frequently encountered in clin-
ics, sepsis is characterized by uncontrolled systemic 
immune responses and subsequent multi-organ dys-
function [1–3]. The excessive production of reactive 
oxygen species (ROS) induced by various pathogens, 
including bacteria and viruses, contributes to signifi-
cant immunological dysregulation and oxidative dam-
age across multiple organs [4–6]. The kidneys, which 
have a high blood flow, are among the most frequently 
impacted organs, resulting in sepsis-associated acute kid-
ney injury (SA-AKI) that contributes to sepsis mortality 
[7, 8]. In particular, the excessive production of ROS in 
the kidneys significantly contributes to the progression 
of SA-AKI, resulting in oxidative damage to renal tubu-
lar epithelial cells and exacerbating inflammation [9, 10]. 
Following renal tubular epithelial injury, mitochondrial 
homeostasis undergoes dysregulation, characterized by 
pathological fragmentation of mitochondrial networks 
and ultrastructural disintegration of cristae. This organel-
lar destabilization induces a marked surge in ROS gen-
eration [11, 12], initiating a self-amplifying cycle through 
NF-κB-mediated transcriptional activation that further 
exacerbates oxidative damage [13]. Concurrently, inflam-
matory mediators induce degradation of the endothelial 
glycocalyx in renal vasculature [14], exposing underly-
ing adhesion molecules [15], and releasing myeloperoxi-
dases and neutrophil extracellular traps (NETs), which 
directly damage the glomerular filtration barrier [16]. 
Notably, ferroptosis emerges as a distinct contributor to 
renal pathology. This iron-catalyzed process is mechanis-
tically defined by lipoxygenase-catalyzed lipid peroxida-
tion within polyunsaturated fatty acid-rich membranes 
of renal tubular cells [17]. The resultant accumulation of 
lipid peroxides synergistically intensifies oxidative stress, 
creating cross-talk between different cell death pathways 
and inflammatory responses that collectively drive renal 
parenchymal destruction [18]. In the clinic, norepineph-
rine [19] and fluid resuscitation [20] are the primary 
interventions for SA-AKI aimed at preventing kidney 
damage; however, they are limited by high costs, poor 
outcomes, and their ineffectiveness in cases of uncon-
trolled inflammatory responses. Consequently, there has 
been a substantial interest in developing novel agents 
that can effectively eliminate ROS and improve inflam-
matory responses for SA-AKI.

Carbon dots (CDs) are recognized as effective nano-
medicines for treating diseases linked to ROS [21]. CDs 
are characterized by excellent biocompatibility, appropri-
ate particle sizes, and controllable biological properties 
[22–24]. The variation in primary precursors used for 
the synthesis of CDs leads to the development of diverse 
functional groups on their surfaces, thereby enhancing 

the biological capabilities. Biomass-derived precursors 
have garnered considerable attention compared to chem-
ical precursors due to the environmental sustainability, 
cost-effectiveness, and distinctive biomedical proper-
ties [25, 26]. Traditional herbal remedies, known for the 
diverse array of active compounds, have been employed 
for centuries to combat diseases and have proven to be 
invaluable precursors for the synthesis of novel CDs 
with unique properties. For example, the CDs derived 
from peach kernel and safflower exhibited therapeutic 
potential for traumatic brain injury by improving the 
blood–brain barrier [27]. Moreover, Lu et al. synthesized 
CDs using the herb Codonopsis pilosula, which pos-
sessed excellent erythrocyte-enhancing capabilities by 
regulating the JAK/STAT pathway [28]. Nevertheless, the 
development of cost-effective and multifunctional CDs 
intended to combat SA-ALI derived from various bio-
mass materials remains a significant challenge.

Ziziphi Spinosae Semen, also known as spine date seed, 
is a famous traditional medicine known for its substantial 
dietary and therapeutic properties in nourishing the 
kidney [29]. The spine date seed is rich in phytochemicals, 
including saponins and flavonoids, which demonstrate 
significant bioactivities, such as anti-inflammatory effects 
[30]. Inspired by these insights, Ziziphi Spinosae Semen 
was chosen as a precursor for the synthesis of CDs in this 
study through a hydrothermal method. The synthesized 
CDs (Z-CDs) exhibited unique surface functional groups, 
providing outstanding biocompatibility and free radical 
scavenging capabilities (Scheme  1). Notably, Z-CDs 
demonstrated a notable ability to reduce excess ROS in 
cells, thereby protecting mitochondrial function from 
oxidative damage. Moreover, the Z-CDs showed notable 
anti-inflammatory capabilities in SA-AKI mouse model 
by suppressing NF-κB-dependent inflammatory pathway 
with minimal side effects.

In summary, our study not only developed a multifunc-
tional and inexpensive nanomedicine derived from phy-
tochemicals but also provided a promising direction for 
the development of innovative drugs based on CDs for 
treating SA-AKI.

Materials and methods
Materials
Ziziphi Spinosae Semen was obtained from BWT 
Chinese Herbal Medicine Drinks Slice (Jinan, Shan-
dong, China) and was authenticated by Prof Li-
Wen Han (Shandong First Medical University). 
Nitrotetrazolium Blue chloride (NBT), Riboflavin, 
L-Methionine, CuSO4, 3,3’,5,5’-tetramethylbenzidine 
dihydrochloride (TMB), Ibuprofen, KBr, FeSO₄·7H₂O, 
and NaAc-HAc (pH = 5.2) were purchased from Rhawn 
(Shanghai, China). The DCFH-DA probe was obtained 
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from AmBeed (Arlington, TX, USA). The Mitosox 
Red was obtained from Thermo Scientific (Waltham, 
MA, USA). The T-AOC Assay Kit was obtained from 
Beyotime Biotechnology (Shanghai, China). Primary 
antibodies against IκBα, P65, NLRP3, COX- 2, iNOS, 
and GAPDH were sourced from Proteintech (Wuhan, 
Hubei, China), whereas antibodies specific for p-IκBα 
and p-P65 were purchased from Cell Signaling Tech-
nology (Boston, MA, USA). The LPS and DMSO were 
sourced from Sigma-Aldrich (Shanghai, China). More 
detailed information about the chemicals and rea-
gents used in this study is provided in Supplementary 
Table S1.

Preparation of Z‑CDs
Ziziphi Spinosae Semen fragments were soaked in deion-
ized water and heated in an autoclave at 200 °C for 8 h. 
The mixture was subjected to filtration with a 0.22 μm 
membrane after cooling to room temperature. Subse-
quently, this solution underwent dialysis for 10 h using 
a 500 Da dialysis membrane and was subsequently sub-
jected to freeze-drying to obtain Z-CDs. The detailed 
synthesis process is shown in Figure S1.

Characterization of Z‑CDs
A Talos F200S Transmission Electron Microscope 
(Thermo Scientific, Waltham, MA, USA) was employed 

Scheme 1  Schematic illustration demonstrates the function of Z-CDs for high ROS scavenging activity in the treatment of SA-AKI
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to characterize the morphology and structure of the 
Z-CDs. The measurement of the Z-CDs thickness 
was conducted with a Dimension Icon AFM (Bruker, 
Karlsruhe, Germany). The FTIR data were captured with 
a Thermo Scientific FT-IR spectrophotometer (Waltham, 
MA, USA) over a wavelength range of 400–4000 cm−1. 
X-ray Photoelectron data was collected using a Thermo 
Scientific K-Alpha X-ray Spectrometer (Thermo Sci-
entific, Waltham, MA, USA). A Hitachi F- 7000 spec-
trometer (Hitachi, Tokyo, Japan) was used to record the 
fluorescence spectra. Data from X-ray diffraction (XRD) 
were gathered with a Rigaku D/MAX- 2600 (Rigaku, 
Tokyo, Japan) at a scanning speed of 2° per min.

The total antioxidant capacity assay
The T-AOC Assay Kit was used to assess the overall 
antioxidant capacity of Z-CDs, according to the manu-
facturer’s guidelines. ABTS•+ radical cation exhibits a 
characteristic absorption peak at 414 nm. The absorb-
ance changes of Z-CDs at different concentrations were 
monitored over 90 s at 414 nm. This allowed for the 
determination of the remaining ABTS•+ concentration. 
Continuous spectral scanning was performed to obtain 
the visible light absorption spectra for each concentra-
tion group.

Superoxide anion scavenging assay
The scavenging effect of Z-CDs on O2

•− was detected by 
the NBT method. In brief, the solution containing Z-CDs 
(0–400 μg/mL), NBT (0.05 mM), L-met (13 mM), and 
riboflavin (20 μM) in a 25 mM PBS buffer (pH 7.4) was 
exposed to LED light for 3  min. The removal effect of 
O2

•− is gauged by the variation in absorbance at 560 nm.

Hydroxyl radical scavenging activity assay
The evaluation of Z-CDs property against •OH radicals 
was conducted as reported with slight modifications 
[31]. The Z-CDs (100 μL) at varying concentrations were 
mixed with 20 μL FeSO4·7H2O (10 mM), 65 μL H2O2 (100 
mM), 10 μL NaAc-Hac buffer (pH 5.2) and 5 μL TMB (10 
mM) solution. After reacting for 60 min in the dark, the 
absorbance at 652 nm was checked, and the eliminating 
rate was evaluated using an equation:

Eliminating rate% = (ATMB-A Sample)/ATMB × 100%
where A refers to the absorbance at 652 nm in solutions 

that include and exclude Z-CDs samples.

Measurement of intracellular ROS
Using a DCFH-DA probe, the measurement of ROS in 
RAW264.7 cells was conducted, according to the instruc-
tions from AmBeed (Arlington, TX, USA). In short, 
cells were incubated with the probe in a serum-free 
medium for 30 min. After washing three times with PBS, 

an LSM980 confocal microscope (Zeiss, Oberkochen, 
Baden-Württemberg, Germany) was used to capture the 
fluorescence images, with optimal excitation at 492 nm 
and emission at 517 nm.

For the assessment of superoxide production by mito-
chondria, the MitoSOX Red Indicators were employed 
according to instructions. The probe, diluted to 500 
nM, was incubated with cells for 30 min at 37 °C, with-
out light. After washing three times with PBS, the 
fluorescence images were obtained using an LSM980 
confocal microscope, with optimal absorption at 396 nm 
and emission at 610 nm.

CuSO₄‑induced zebrafish model
The transgenic zebrafish strain Tg (lyz: DsRED2) was uti-
lized and kept as outlined in earlier descriptions [32]. In 
short, 20 zebrafish embryos (72 h of post-fertilization) 
were placed in a six-well plate and randomly distributed 
into the indicated groups, including the control, model, 
positive control (4 μg/mL ibuprofen), and Z-CDs at 50, 
100, and 200 μg/mL. After 6 h of pre-protection for the 
positive control and Z-CDs groups, CuSO4 (20 μM) was 
employed to provoke inflammation for 2  h. Afterward, 
ten zebrafish were chosen at random to examine neu-
trophil distribution with a fluorescent microscope. All 
experiments were sanctioned by the Laboratory Animal 
Ethical and Welfare Committee at the Institute of Mate-
ria Medica, Shandong Academy of Medical Sciences (No. 
202405).

In vivo evaluation in an SA‑AKI mouse model
BALB/C male mice, 18–20 g and 7–8 weeks old, were 
sourced from Charles River (Beijing, China), and main-
tained free access to water and food under standard SPF 
conditions at 25 °C and 50% humidity. For the therapeu-
tic validation of Z-CDs in an SA-AKI mouse model, ran-
dom division of the mice resulted in five groups: control, 
LPS, LPS + DEX (3 mg/kg), LPS + Z-CDs (25 mg/kg), and 
LPS + Z-CDs (50 mg/kg). To establish the SA-AKI mouse 
model, mice were given an intraperitoneal injection of 
LPS at a concentration of 5 mg/kg. Then, the mice were 
intraperitoneally administrated with 100 μL PBS with or 
without Z-CDs (25 or 50 mg/kg) after LPS injection for 
1 h. All animals were euthanized with isoflurane anesthe-
sia after 24 h, and the tissue samples were obtained for 
further analysis.

For biosafety assessment of Z-CDs, the mice were 
intraperitoneally injected with saline or Z-CDs (100 and 
500 mg/kg). The weight of each mouse was monitored 
daily for a week. Blood analysis was performed using a 
hematology analyzer from the mice after Z-CDs injec-
tion. The serum biochemical indicators, including creati-
nine (CREA), aspartate aminotransferase (AST), blood 
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urea nitrogen (BUN), and alanine aminotransferase 
(ALT) were analyzed using a liver and kidney function 
activity assay kit. The organs mentioned were subjected 
to H&E staining following the guidelines. Approval for all 
animal studies was granted by the Ethics Committee of 
the Experimental Animal Centre of Shandong First Med-
ical University (No. W202410180685).

For more experimental details, please refer to Support-
ing Information.

Statistical analysis
Statistical analysis was performed using Prism 10 
(GraphPad Software). Data are presented as mean ± SD 
unless stated otherwise. P values were determined using 
an unpaired two-tailed Student’s t-test, and values below 
0.05 were considered statistically significant.

Results
Synthesis and characterization of Z‑CDs
To avoid the generation of toxic effects, we employed 
a hydrothermal method to synthesize Z-carbon dots 
(Z-CDs) based on spine date seed at 200 °C for 8 h (Figure 
S1, Supporting Information). TEM images demonstrated 
that the Z-CDs possessed high uniformity and good 
dispersibility, featuring an average size of 3.82 ± 1.08 nm 
(Fig. 1A and B). The high-resolution TEM image further 
corroborated the successful synthesis of the Z-CDs, 
revealing a lattice fringe of 0.2 nm (Fig.  1C), which 
corresponded to the crystalline plane of carbon [33]. By 
employing atomic force microscopy (AFM), we further 
analyzed the morphology of Z-CDs. As shown in Fig. 1D, 
Z-CDs displayed an even distribution and spherical shape 
with uniform thickness. The XRD analysis confirmed the 
purity of the synthesized Z-CDs, exhibiting a diffraction 
peak at 22°, indicative of amorphous carbon structures 
(Fig. 1E). In the ultraviolet absorption spectra of Z-CDs 
(Fig. 1F), a stronger peak was observed at approximately 
300 nm, resulting from the π-π* transition in the sp2 
structural domain [34]. By using an integrating sphere 
system, the absolute quantum yield of the Z-CDs was 
determined as ≈5.3%, indicating the bioimaging potential 
of Z-CDs. Simultaneously, Z-CDs demonstrated 
excitation-dependent characteristics, with an excitation 
wavelength peak at 440 nm and an emission wavelength 
of 530 nm (Fig. 1F). The optical characteristics of Z-CDs 
were additionally validated through three-dimensional 
fluorescence emission spectra (Figure S2, Supporting 
Information), which remained stable over various 
NaCl concentrations (0–1.0 M) (Figure S3, Supporting 
Information). As depicted in the laser confocal scanning 
microscopy (LSM980 confocal microscope) images, 
Z-CDs labeled RAW264.7 cells efficiently within 
5  min under 405 nm excitation (Figure S4, Supporting 

Information), resulting in blue fluorescence that 
remained stable for at least 1 h. These results underscored 
the potential of utilizing Z-CDs for cellular imaging in 
biological applications.

To explore the surface structure and chemical compo-
sition of the Z-CDs, we employed FTIR and XPS analysis. 
The FTIR spectrum result in Fig. 1G detected stretching 
bands for O–H at 3374 cm−1, C–N at 2936 cm−1, C = C 
at 1707 cm−1, and C = O at 1611 cm−1. The presence of 
hydrophilic groups such as O–H contributed to the excel-
lent water solubility of Z-CDs. Moreover, XPS analysis 
revealed that Z-CDs primarily consisted of C (65.82%), 
N (4.82%), and O (29.36%) (Fig. 1H). The C 1 s spectrum 
with high resolution was divided into four major peaks, 
which represented C = O at 288.34 eV, C–N at 285.74 eV, 
C–O at 286.64 eV, and C = C/C–C at 284.74 eV. (Fig. 1I). 
Two principal peaks at 531.2 and 532.1 eV were identified 
in the O 1 s band deconvolution, representing C-O and 
C = O (Fig.  1J). The N 1 s band deconvolution revealed 
two primary peaks at 399.8 and 401.6 eV, indicating the 
presence of C-N and N–N (Fig. 1K). Therefore, the syn-
thesized Z-CDs demonstrated distinctive biological func-
tions attributed to the appropriate particle size, along 
with the structural and optical properties.

Z‑CDs exhibit distinctive free radical scavenging 
capabilities in vitro
Previous research has indicated that unsaturated groups 
impart significant antioxidant properties to biomass-
derived CDs [31]. Thus, the presence of unsaturated 
groups in Z-CDs motivated us to test whether the 
Z-CDs possessed antioxidant capabilities. First, the 
total antioxidant capacity of Z-CDs was evaluated by 
using the ABTS assay. As shown in Fig.  2A and B, the 
production of oxidized ABTS was significantly inhibited 
by Z-CDs, with an inhibition rate exceeding 80% at a 
concentration of 200 μg/mL. This inhibition resulted in 
an antioxidant effect comparable to that of 50 μM Trolox, 
thereby demonstrating the remarkable antioxidant 
capacity of Z-CDs. Given that the cellular ROS, which are 
by-products of aerobic metabolism, primarily consists of 
hydrogen peroxide (H2O2), hydroxyl radicals (•OH), and 
superoxide anion (O2

•−) [35], we evaluated the scavenging 
ability of Z-CDs for these free radicals, respectively. 
We initially evaluated the O2

•− scavenging ability of 
Z-CDs using nitrotetrazolium blue chloride (NBT) as 
an indicator. NBT can be reduced by O2

•− to generate 
a product that exhibits a distinct absorbance peak at 
560 nm [36]. Here, Z-CDs displayed a concentration- 
dependent effectiveness in eliminating O2

•− (Fig. 2C). To 
investigate the efficiency of hydroxyl radical removal by 
Z-CDs, we employed a Fenton method that combined 
Fe2+ with H2O2 to generate •OH. Quantitative analysis 



Page 6 of 15Wang et al. Chinese Medicine           (2025) 20:49 

Fig. 1  Characterization of Z-CDs. A TEM image of Z-CDs. Scale bar: 50 nm. B Size distribution of Z-CDs. C The high-resolution TEM image of Z-CDs. 
D AFM image of Z-CDs. Scale bar: 600 nm. E XRD pattern of Z-CDs. F Ultraviolet absorption spectra (black line), fluorescence excitation (red line), 
and emission (blue line) spectra of Z-CDs. Inset: Images of Z-CDs taken under daylight (left) and 365 nm UV lamp (right). G FTIR spectra of Z-CDs. H 
Full scan XPS spectrum of Z-CDs. I–K High-resolution C 1 s, O 1 s, and N 1 s XPS spectra of Z-CDs
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demonstrated that Z-CDs effectively eliminated the 
•OH (Fig.  2D and E), indicating the enhanced capacity 
as antioxidants. In addition, Z-CDs failed to neutralize 
H2O2 directly (data not shown), showing an absence of 
CAT-like activity. Therefore, our study revealed that the 
capacity of Z-CDs to scavenge O2

•− and •OH contributed 
to the elimination of ROS (Fig. 2F).

Z‑CDs alleviate cellular oxidative damage by eliminating 
mitochondrial ROS
The remarkable ability of Z-CDs to scavenge ROS 
in vitro prompted us to investigate its effect in depleting 
cellular ROS. Since infection-triggered excessive ROS 
and unregulated inflammatory responses are key to 
SA-AKI progression, we utilized a lipopolysaccharide 
(LPS)-stimulated RAW 264.7 cell model to explore the 
therapeutic potential of Z-CDs on cellular oxidative stress 
and inflammation [37]. As shown in Fig. 3A and B) LPS 
treatment led to a significant rise in cellular ROS, which 
was reduced by Z-CDs in a concentration-dependent 
manner, showing the high efficiency in scavenging 

cellular ROS. Since mitochondria are the primary site for 
ROS production [38], we then monitored mitochondrial 
superoxide (mtROS) levels. As expected, the LSM980 
confocal microscope images showed that Z-CDs 
notably inhibited the LPS-induced ROS production in 
mitochondria (Fig. 3C, D). Given that excessive ROS can 
cause irreversible oxidative damage, we subsequently 
evaluated the protective effects of Z-CDs against 
oxidative damage by measuring the levels of cellular 
superoxide dismutase (SOD) and malondialdehyde 
(MDA). We observed that Z-CDs significantly boosted 
SOD activity while lowering MDA levels (Fig.  3E, F), 
highlighting the protective role of Z-CDs in oxidative 
damage. Thus, Z-CDs showed a remarkable ability to 
clear excess ROS in cells, thus preserving mitochondrial 
function from oxidative damage.

Z‑CDs exert anti‑inflammatory effects by inhibiting 
the NF‑κB pathway
Given the association between excessive ROS and 
inflammatory diseases [39, 40], we proceeded to 

Fig. 2  Z-CDs exert excellent ROS scavenging activities of in vitro. A The total antioxidant capacity of Z-CDs was measured by using the ABTS 
method. B The UV–vis absorption spectra of ABTS•+ solutions after mixing with Z-CDs at different concentrations. C The elimination O2•− capacity 
of Z-CDs of different concentrations. D The •OH scavenging capacity of Z-CDs was detected based on the Fenton reaction. E UV–vis absorption 
spectra of TMB solutions after mixing with Z-CDs. F Schematic diagram of the free radicals scavenging activity of the Z-CDs. Data are expressed 
as mean ± SD, n = 3
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explore the anti-inflammatory effects of Z-CDs due 
to the remarkable antioxidant capacity. As shown in 
Fig. 4A, the LPS-induced production of nitric oxide was 

notably decreased by Z-CDs after 24 h treatment, with 
no toxic effects on cells. Meanwhile, the levels of pro-
inflammatory proteins, including COX- 2, iNOS, and 

Fig. 3  Z-CDs alleviate cellular oxidative damage by eliminating mitochondrial ROS. A, B Detection of cellular ROS in RAW 264.7 cells with or without 
Z-CDs for 24 h using DCFH-DA probe. Scale bar: 20 μm. C, D The mitochondrial superoxide in RAW 264.7 cells were measured by using MitoSOX red 
probe. Scale bar: 20 μm. E, F Assessment of cellular MDA and SOD levels. Data are expressed as mean ± SD, n = 3. ###P < 0.001, vs. control group; *P < 
0.05, **P < 0.01, ***P < 0.001, vs LPS group
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NLRP3, were reduced in a concentration-dependent 
manner by Z-CDs (Fig.  4B–E). Since LPS exposure 
induces macrophages undergoing M1 polarization 

and producing pro-inflammatory cytokines to combat 
pathogen [41], we then examined the transcription 
of pro-inflammatory cytokines using qRT-PCR. The 

Fig. 4  Z-CDs exert anti-inflammatory effects by inhibiting the NF-κB pathway. A Quantification of the NO production in RAW 264.7 cells 
after being administered with Z-CDs. B Representative images of COX- 2, iNOS, and NLRP3 protein levels in RAW 264.7 cells. C–E Quantitative 
analysis of the indicated protein levels in (B). F–H The expression of IL- 6, IL- 1β, and TNF-α were measured by qRT-PCR. I–K Representative profiles 
and quantitative analysis of phosphorylated IκBα (Ser32) and phosphorylated P65 (Ser536) with or without Z-CDs treatment. Data are expressed 
as mean ± SD, n = 3. ###P < 0.001, vs. control group; *P < 0.05, **P < 0.01, ***P < 0.001, vs. LPS group
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treatment with Z-CDs for 6  h led to a significant 
reduction in the expression of TNF-α, IL- 6, and IL- 1β 
in a manner that was comparable to the previous study 
(Fig. 4F–H). The activation of the TLR4/NF-κB pathway 
regulates the production of inflammatory cytokines in 
RAW 264.7 cells in response to LPS [42]. Consequently, 
we measured the levels of key proteins in RAW 264.7 
cells, both with and without treatment with Z-CDs. 
Figure  4I–K showed that LPS significantly increased 
the levels of phosphorylated IκBα and p65, which 
were significantly reversed by Z-CDs. Therefore, our 
findings indicated the therapeutic potential of Z-CDs in 
inflammatory diseases by modulating the TLR4/NF-κB 
pathway.

Z‑CDs exert a noteworthy therapeutic benefit 
against SA‑AKI in vivo by eliminating ROS and improving 
inflammatory response
The ROS scavenging and anti-inflammatory capacities 
encouraged us to evaluate the therapeutic potential of 
Z-CDs against inflammatory disease in vivo. Initially, we 
assessed the therapeutic efficacy of Z-CDs using a widely 
established zebrafish model of inflammation induced by 
CuSO4 [32]. Zebrafish embryos, 48 h post-fertilization, 
were subjected to a 6-h pretreatment with Z-CDs, 0.1% 
DMSO (used as a solvent control), and 20 µM ibuprofen 
(serving as a positive control). Then, the embryos were 
exposed to 20 µM CuSO4 for 2  h to induce oxidative 
damage and promote the infiltration of neutrophils 
(Figure S5, Supporting Information). The administration 
of Z-CDs resulted in a significant reduction in neutrophil 
migration in a concentration-dependent manner (Fig. 5A, 
B), indicating the potential as a promising candidate 
for treating inflammatory-related diseases. Next, we 
proceeded to assess the therapeutic effects of Z-CDs in 
a mouse model (Fig.  5C). Following the intraperitoneal 
injection of LPS, the mice displayed symptoms such 
as tremors, squinting, and increased secretions within 
24 h, which were absent in the mice treated with 
dexamethasone or Z-CDs. To investigate the kidney-
protective effects of Z-CDs, serum CREA and BUN 
levels were monitored. As shown in Fig.  5D and E, the 
administration of Z-CDs at a dose of 50 mg/kg effectively 

reduced the LPS-induced elevation of serum CREA and 
BUN, achieving a therapeutic effect similar to that of 
dexamethasone. Meanwhile, the expression of cytokines 
in the kidney tissues was significantly reduced following 
treatment with Z-CDs (Fig. 5F and G). Importantly, the 
H&E staining images of kidney tissues further revealed 
that Z-CDs prevented the inflammatory infiltration and 
severe damage of renal tubular epithelial cells (Fig. 5H). 
These findings indicate that Z-CDs have a therapeutic 
effect on SA-AKI, demonstrating considerable potential 
for translational medicine.

Z‑CDs ehibit excellent biocompatibility and safety
To address the clinical translational limitations related 
to the biosafety of Z-CDs, we conducted an evaluation 
of the biological toxicity. First, we assessed the 
cytotoxicity of the Z-CDs using RAW264.7, HUVEC, 
and HK- 2 cell lines, which represent human immune 
and epithelial cells. The results from the CCK- 8 assay 
revealed an absence of cytotoxic effects toward any of 
these cell lines at a concertation of 400 µg/mL (Fig. 6A–
C). Subsequently, we conducted an in  vivo biosafety 
assessment by administering Z-CDs at doses of 100 mg/
kg and 500 mg/kg body weight to mice. By monitoring 
body weight changes every day, no considerable body 
weight differences were noted after a week of Z-CDs 
administration (Fig. 6D). Analysis of peripheral blood in 
mice revealed no significant abnormalities (Fig.  6E–H). 
Meanwhile, the serum biochemical indicators, such as 
AST, ALT, CREA, and BUN, did not show any noticeable 
differences between these groups (Fig. 6I–L), highlighting 
the absence of hepatorenal toxicity associated with 
Z-CDs. Furthermore, H&E staining was also employed 
to evaluate the toxicity in the heart, liver, spleen, lung, 
and kidney. The histopathological analysis revealed 
no significant abnormalities across any of the groups 
(Fig.  6M). Thus, these findings suggested that Z-CDs 
showed acceptable biosafety.

Discussion
The development of effective and biocompatible thera-
peutic agents for sepsis-associated acute kidney injury 
(SA-AKI) remains a critical challenge due to the complex 

(See figure on next page.)
Fig. 5  Z-CDs exert as a therapeutic agent against SA-AKI in vivo by eliminating ROS and improving inflammatory response. A Phenotypes 
and quantitative analysis of neutrophil distribution and tail neutrophil spread to lateral line in zebrafish. The yellow box indicates the neutrophil 
spreading area (neutrophils of 72 hpf transgenic zebrafish exhibiting red fluorescence). B Quantification of the number of neutrophils from (A). Each 
dot represents one zebrafish, n = 5. C Schematic diagram of the animal experimental program. D–E Quantitative determination of serum levels 
of CREA and BUN, indicators of kidney impairment in mice. Each dot represents one mouse, n = 5. F–G Expression of mRNA levels of IL- 6 and IL- 1β, 
inflammation-related indicators, in mouse kidney tissues by qPCR. n = 5. H Representative images of the histologic morphology of kidney tissue 
assessed by H&E staining. n = 5. Scale bar: 100 μm. Data are expressed as mean ± SD. ###P < 0.001, vs. control group; *P < 0.05, **P < 0.01, ***P < 0.001, 
vs. LPS group
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Fig. 5  (See legend on previous page.)
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Fig. 6  Biosafety valuation of Z-CDs. A–C CCK- 8 analysis was performed with various concentrations of Z-CDs in RAW264.7, HUVEC, and HK2 cells. 
n = 3. D Quantitative analysis of body weight. n = 6. E–H Analysis of peripheral blood in indicated mice. n = 6. I–L Serum levels of ALT, AST, CERA, 
BUN in indicated mice. n = 5. M Representative images of the histologic morphology of different tissues (heart, liver, spleen, lungs, and kidneys) 
were evaluated by H&E staining. n = 5. Scale bar: 100 μm. Data are expressed as mean ± SD
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interplay of oxidative stress and uncontrolled inflamma-
tion driving the pathology. In this study, we successfully 
synthesized multifunctional carbon dots (Z-CDs) derived 
from Ziziphi Spinosae Semen and demonstrated their 
remarkable therapeutic potential in mitigating SA-AKI 
through dual mechanisms of ROS scavenging and anti-
inflammatory action. Our findings highlight the promise 
of biomass-derived nanomaterials as innovative, cost-
effective, and sustainable solutions for managing inflam-
matory and oxidative stress-related diseases.

As a traditional medicine known for nourishing the 
kidney and mind, hundreds of compounds have been 
identified from Ziziphi Spinosae Semen, including fla-
vonoids, saponins, and polysaccharides, with various 
pharmacological effects [30]. Interestingly, spectroscopic 
characterization (FTIR/XPS) revealed surface func-
tionalization of Z-CDs with hydroxyl, carbonyl, and 
amino moieties, suggesting successful integration of the 
herb’s native phytoconstituents (flavonoids, saponins) 
into the carbon nanostructure during thermal degra-
dation [43]. Crucially, the high-pressure hydrothermal 
environment facilitated the structural reorganization 
of polar functional groups (-OH, -COOH) into heter-
oatom-doped (e.g., N, O) carbon matrices while pre-
serving electron-rich oxygen clusters essential for redox 
modulation. These architecturally conserved active sites 
enable potent ROS neutralization (O₂•⁻, •OH) through 
π-electron cloud interactions, demonstrating signifi-
cantly enhanced scavenging efficiency compared to hon-
eysuckle-derived counterparts [34, 44]. Notably, Z-CDs 
demonstrated superior antioxidant capacity compared to 
synthetic antioxidants like Trolox in vitro, underscoring 
their potential as therapeutic agents for oxidative stress-
related conditions [45]. Additionally, the phytochemical 
diversity of the herbs would endow the generated carbon 
dots distinctive bioactivities. For example, the Codonop-
sis pilosula derived carbon dots, which is enriched with 
polysaccharides, exhibited excellent erythrocyte-enhanc-
ing capabilities as a superoxide dismutase (SOD) like 
nanozyme [28]. Yang et  al. developed novel functional 
carbon dots using carbonized Platycladus orientalis as 
precursor, which accelerate hemostasis through activa-
tion of platelets [46]. Thus, the methodology exempli-
fies a rational fusion of pharmacognostic wisdom with 
nanoscale engineering, establishing a blueprint for next-
generation phytomedicine-derived nanotherapeutics.

A key finding of this study is the ability of Z-CDs 
to protect mitochondrial function by reducing 
mitochondrial ROS (mtROS) in LPS-stimulated 
macrophages. Mitochondria are both primary sources 
and targets of ROS in inflammatory conditions, and 
their dysfunction exacerbates cellular damage and 
inflammation [29]. Our results revealed that Z-CDs 

effectively ameliorated oxidative stress by preserving 
mitochondrial ultrastructure, enhancing superoxide 
dismutase activity, and reducing lipid peroxidation 
markers as quantified in Fig.  3, indicating their critical 
role in mitigating SA-AKI progression. Consistently, 
Z-CDs administration significantly alleviated 
H2O2-induced oxidative stress in renal proximal tubular 
epithelial cells by scavenging intracellular ROS, followed 
by reduced MDA levels and increased CAT activity 
(Figure S6, Supporting Information). Importantly, Z-CDs 
exerted potent inhibitory effects on NF-κB nuclear 
translocation through dose-dependent suppression of 
IκBα degradation and p65 phosphorylation, suggesting 
selective disruption of the TLR4/NF-κB signaling axis—a 
central mediator of sepsis-induced organ dysregulation 
[33]. While our phosphoproteomic analysis confirmed 
NF-κB pathway modulation, a critical knowledge gap 
remains regarding upstream regulatory targets of Z-CDs. 
Li et al. reported a ginger-derived carbon dots accelerate 
wound healing by effectively blocking the TLR4-mediated 
NF-κB pathway, providing direct phenotypic evidence for 
the abilities of carbon dots on regulating TLR4 activity 
[47]; Given that the nano-protein interaction helps to 
modulate the structure of target proteins [48], we cannot 
dismiss the possibility that Z-CDs may target TLR4 or 
MyD88 directly and regulate their protein activity, which 
deserves future investigations. Importantly, the anti-
inflammatory effects of Z-CDs in  vivo mirrored those 
of dexamethasone, a potent glucocorticoid, but without 
the associated side effects, as evidenced by biosafety 
assessments. This mechanism is particularly relevant 
in SA-AKI, where excessive inflammation and oxidative 
stress synergistically damage renal tubules.

Nonetheless, there are still several questions remain to 
be addressed. First, while the surface functional groups of 
Z-CDs are implicated in their bioactivity, the exact struc-
ture–activity relationships require further elucidation. 
For instance, the contribution of specific phytochemi-
cals (e.g., saponins or flavonoids) from Ziziphi Spinosae 
Semen to the final properties of Z-CDs warrants inves-
tigation. Second, the pharmacokinetics and biodistribu-
tion of Z-CDs in  vivo need detailed characterization to 
optimize dosing regimens. Third, the long-term effects of 
Z-CDs and their potential interactions with other sepsis 
therapies (e.g., antibiotics) should be explored. Finally, 
while the NF-κB pathway was identified as a key target, 
additional pathways such as Nrf2/ARE, which regulates 
antioxidant responses, may also contribute to the thera-
peutic effects and merit further study.
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Conclusions
In this study, we successfully synthesized and charac-
terized the Z-CDs from natural botanical constituents. 
Z-CDs exhibited significant antioxidant properties and 
free radical scavenging capabilities for the presence of 
unsaturated functional groups. Notably, Z-CDs showed 
a noteworthy therapeutic benefit in mouse and zebrafish 
models in vivo, with excellent biocompatibility and safety, 
suggesting substantial potential for medical transla-
tion. In mechanism, Z-CDs protected kidney tissues by 
eliminating excess ROS and inhibiting NF-κB-dependent 
inflammatory pathway. Taken together, this study 
enhances our understanding of the role of CDs in the 
treatment of SA-AKI, thereby offering a kind of potential 
CDs with translational value for SA-AKI therapy.
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